• Title/Summary/Keyword: seismic station

Search Result 138, Processing Time 0.029 seconds

Seismic Displacement Analysis of GPS Permanent Stations in Korean and Asian Area Due to the Tohoku-Oki Mega-Thrust Earthquake (일본 Tohoku-Oki 대지진으로 인한 한국 및 아시아 지역 상시관측소의 위치변동량 분석)

  • Hwang, Jin-Sang;Yun, Hong-Sic;Lee, Dong-Ha;Jung, Tae-Jun;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.137-149
    • /
    • 2011
  • In this study, we analyzed the effects of seismic displacements due to the mega thrust earthquake occurred near Tohoku-Oki area on Mar. 11, 2011 with Mw 9.0 magnitude in the context of evaluation of position change by the earthquake on the Korean and Asian GPS permanent stations. For this, two weeks GPS data observed around the event of Tohoku-Oki earthquake (Mar. 4 ~ Mar. 18, 2011) were obtained from 22 GPS permanent stations in the vicinity of epicenter (Korea, Japan, Russia, China and Taiwan) and 284 IGS global stations. All available GPS data were processed and adjusted by GAMIT/GLOBK software to estimate the co-seismic horizontal displacements at each station. As the results of GPS analysis, the co-seismic displacements due to Tohoku-Oki earthquake were clearly revealed in the GPS stations of Asian region, Japan and its neighboring countries, and even to affect the horizontal position of GPS station (WUHN in China) which are located about 2,702km away from the epicenter. In conclusion, it was found that the Tohoku-Oki earthquake had resulted in the horizontal displacements ranging from 14.9 mm to 58.3 mm in Korea. So, these displacements can cause the position error of GPS geodetic survey up to 20 mm without updating the coordinates of Korean geodetic network.

Seismic performance of precast joint in assembled monolithic station: effect of assembled seam shape and position

  • Liu, Hongtao;Du, Xiuli
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.611-621
    • /
    • 2019
  • Precast concrete structure has many advantages, but the assembled seam will affect potentially the overall seismic performance of structure. Based on the sidewall joint located in the bottom of assembled monolithic subway station, the main objectives of this study are, on one hand to present an experimental campaign on the seismic behavior of precast sidewall joint (PWJ) and cast-in-place sidewall joint (CWJ) subjected to low-cycle repeated loading, and on the other hand to explore the effect of shape and position of assembled seam on load carrying capacity and crack width of precast sidewall joint. Two full-scale specimens were designed and tested. The important index of failure pattern, loading carrying capacity, deformation performance and crack width were evaluated and compared. Based on the test results, a series of different height and variably-shape of assembled seam of precast sidewall joint were considered. The test and numerical investigations indicate that, (1) the carrying capacity and deformation capacity of precast sidewall and cast-in-place sidewall were very similar, but the crack failure pattern, bending deformation and shearing deformation in the plastic hinge zone were different obviously; (2) the influence of the assembled seam should be considered when precast underground structures located in the aquifer water-bearing stratum; (3) the optimal assembled seam shape and position can be suggested for the design of precast underground concrete structures according to the analysis results.

Earthquake risk assessment of underground railway station by fragility analysis based on numerical simulation

  • Kwon, Sun Yong;Yoo, Mintaek;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • Korean society experienced successive earthquakes exceeding 5.0 magnitude in the past three years resulting in an increasing concern about earthquake stability of urban infrastructures. This study focuses on the significant aspects of earthquake risk assessment for the cut-and-cover underground railway station based on two-dimensional dynamic numerical analysis. Presented are features from a case study performed for the railway station in Seoul, South Korea. The PLAXIS2D was employed for numerical simulation and input of the earthquake ground motion was chosen from Pohang earthquake records (M5.4). The paper shows key aspects of earthquake risk for soil-structure system varying important parameters including embedded depth, supported ground information, and applied seismicity level, and then draws several meaningful conclusions from the analysis results such as seismic risk assessment.

Crustal structure beneath broadband seismic station using receiver function (수신함수를 이용한 관측소 하부의 지진파 속도구조)

  • 박윤경;전정수;김성균
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.45-49
    • /
    • 2003
  • The velocity structure beneath the CHNB broadband station is determined by receiver function analysis using by from teleseismic P waveforms. The detailed broadband receiver functions are obtained by stacking method for source-equalized vertical, radial and tangential components of teleseismic P waveforms. A time domain inversion uses the stacked radial receiver function to determine vertical P wave velocity structure beneath the station. The crustal velocity structures beneath the stations are estimated using the receiver function inversion method in the case at the crustal model parameterized by many thin, flat-tying, homogeneous layers. The result of crust at model inversion shows the crustal velocity structure beneath the CHNB station varies smoothly with increasing depth, and there are six discontinuity around 2.5km, 6.25km, 12.5km, 22.5km and 27.5km depth, with Moho discontinuity at about 32.5km depth.

  • PDF

Crustal structure beneath broadband seismic station using receiver function (2) (수신함수를 이용한 관측소 하부의 지진파 속도구조 (2))

  • 박윤경;전정수;김성균
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.3-7
    • /
    • 2003
  • The velocity structure beneath the CHNB broadband station is determined by receiver function analysis using by from teleseismic P waveforms. The detailed broadband receiver functions are obtained by stacking method for source-equalized vertical, radial and tangential components of teleseismic P waveforms. A time domain inversion uses the stacked radial receiver function to determine vertical P wave velocity structure beneath the station. The crustal velocity structures beneath the stations are estimated using the receiver function inversion method in the case at the crustal model parameterized by many thin, flat-lying, homogeneous layers. Events divide into 4 groups. four azimuths corresponding to events in group a(southwest), b(south), c(southeast), d(northeast). The result of crust at model inversion shows the crustal velocity structure beneath the CHNB station varies smoothly with increasing depth. The conard discontinuity lies around 18 km and moho discontinuity lies range from 30 to 34 km.

  • PDF

Enhancement of Real-Time Transmission Performance of PGA data (PGA 데이터의 실시간 전송능력 향상)

  • Lim, In-Seub;Choi, In-Young;Jung, Soon-Key
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.37-44
    • /
    • 2009
  • In this paper, we propose an efficient method which improves the performance of transmission of PGA which is essential data for real-time earthquake monitoring system. Currently, above 120 earthquake stations were installed nationwide and additional installation is expected because the social interesting of earthquake hazard is rising. Real-time earthquake monitoring system checks earthquake occurrence by using PGA were calculated from acceleration data of each seismic station. An efficient method of PGA data transmission is key factor of real-time monitoring. The key idea of proposed method is to deal with each seismic station using an unique ID, to assign one bit to indicate whether a packet include a station's data or not. Proposed method can contain more station data and decrease the data loss compared to current method. To verify proposed method, we investigate the turnaround time and ratio of data loss using above 91000 packets. As results of experiment. the proposed method is proven that the method need more time about 50% but reduce the data loss about 87% as compared to previous method.

Analysis of Site Amplification of Seismic Stations using Odesan Earthquake (오대산지진 자료를 이용한 국내 지진관측소 부지의 지반증폭특성 연구)

  • Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.27-34
    • /
    • 2009
  • Site amplification should be considered in order to estimate Soil-Structure Interaction (SSI), seismic source and attenuation parameters with a greater degree of reliability. The horizontal to vertical (H/V) ratio technique, originally proposed by Nakamura (1989), has been applied to analyze the surface waves in microtremor records. Recently, its application has been extended to the shear wave energy of strong motion in order to study the site transfer function. The purpose of this paper is to estimate the H/V spectral ratio using the observed data from 9 seismic stations distributed within the Southern Korean Peninsula, from the Odesan earthquake (2007/01/20). The results show that most of the stations have more stable amplification characteristics in a low frequency band than in a high frequency band. However, each seismic station showed its own characteristic resonant frequency and low and high frequency. The resonant frequency at each station should be estimated carefully, because the quality of seismic data is dependent on the resonant frequency. It can be obtained more reliable results of seismic source and attenuation parameters, if seismic ground motions which deconvolved from site transfer function is used. The site amplification data from this study can be used to generally classify the sites within the Southern Korean Peninsula.

Response Modification Factor and Deformability for Structural Walls Designed with Different Details (구조 상세가 다른 벽체의 변형성능과 반응수정계수)

  • 오영훈;한상환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.959-964
    • /
    • 2001
  • This study investigates the seismic performance of bearing walls with rectangular sectional shape and specific details of reinforcements developed for 10 to 20-story apartment buildings in Korea. To investigate seismic behavior of structural walls, several specimens were experimented by author and laboratory test results by other researchers were collected and analysed. Structural behaviors of walls were evaluated by means of ductility, deformation, and strength capacities. For this purpose, thirty six specimens having different Properties such as aspect ratios and details were considered. Based on the results of this study, deformability of the walls with specific details is discussed. Also this study compares the response modification factor(R) for the bearing wall systems in seismic design provisions between Korea and United States.

  • PDF

A Seismic Design of RC Underground Subway Structure (지중 RC 도시지하철고 구조물의 내진설계)

  • Jeong, Jae-Pyoung;Im, Tong-Won;Lee, Seong-Lo;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.357-362
    • /
    • 2000
  • This Paper presents dynamic analysis of underground R/C Subway Structure, subjected to seismic actions. Earthquakes brought serious damage to RC subway Structure. Foe studying the collapse mechanism of underground RC Subway, seismic of a subway station is simulated in using FEM program ASP2000 of two-dimension based on the path dependent RC elastic model, soil foundation and interfacial models. The shear failure of intermediate vertical columns is founds to be the major cause of the structural collapse. According to FEM simulation of the failure mechanism, it is considered that the RC column would lose axial load carrying capacity after the occurrence of the localized diagonal shear cracks , and sudden failure of the outer frame would be followed. Specially, the shear stress in the middle slab reaches maximum shear capacity. So, the Structure would fail in the middle slab as a result of erasing the vertical ground motion computation.

  • PDF

Application of the Onsite Earthquake Early Warning Technology Using the Seismic P-Wave in Korea (P파를 이용한 지진 현장 경보체계기술의 국내 적용)

  • Lee, Ho-Jun;Lee, Jin-Koo;Jeon, Inchan
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.440-449
    • /
    • 2018
  • Purpose: This study aims to design and verify an onsite EEWS that extracts the P-wave from a single seismic station and deduce the PGV. Method: The P-wave properties of Pd, Pv, and Pa were calculated by using 12 seismic waveform data extracted from historic seismic records in Korea, and the PGVs were computed using empirical equation on the P properties - PGV relationship and compared with the observed values. Results: Comparison of the observed and estimated PGVs within the alarm level shows the error rate of 86.7% as minimum. By reducing the PTW to 2 seconds, the alarm time can be shortened by 1 second and the seismic blind zone near the epicenter can be shortened by 6 Km. Conclusion: Through this study, we confirmed the availability of the on-site EEWS in Korea. For practical use, it is necessary to develop regression formula and algorithm reflect local effect in Korea by increasing the number of seismic waveform data through continuous observation, and to eliminate the noise from the site.