• Title/Summary/Keyword: seismic spectral analysis

Search Result 194, Processing Time 0.027 seconds

Seismic microzonation of Kolkata

  • Shiuly, Amit;Sahu, R.B.;Mandal, Saroj
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.125-144
    • /
    • 2015
  • This paper presents the probabilistic seismic microzonation of densely populated Kolkata city, situated on the world's largest delta island with very soft alluvial soil deposit. At first probabilistic seismic hazard analysis of Kolkata city was carried out at bedrock level and then ground motion amplification due to sedimentary deposit was computed using one dimensional (1D) wave propagation analysis SHAKE2000. Different maps like fundamental frequency, amplification at fundamental frequency, peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), maximum response spectral acceleration at different time period bands are developed for variety of end users, structural and geotechnical engineers, land use planners, emergency managers and awareness of general public. The probabilistically predicted PGA at bedrock level is 0.12 g for 50% exceedance in 50 years and maximum PGA at surface level it varies from 0.095 g to 0.18 g for same probability of exceedance. The scenario of simulated ground motion revealed that Kolkata city is very much prone to damage during earthquake.

Analysis of Site Amplification Characteristics of Several Seismic Stations Distributed in the Southern Korean Peninsula (국내 지진관측소 부지의 지반증폭특성 연구)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.486-494
    • /
    • 2006
  • The horizontal to vertical (H/V) ratio technique in spectral domain is a common useful technique to estimate empirical site transfer function. The technique, originally proposed by Nakamura, is proposed to analyse the surface waves in the micrortremor records. The purpose of this paper is to estimate spectral ratio using observed data at the seismic stations distributed within Southern Korean Peninsula from the Fukuoka earthquake including 11 aftershocks. The results show that most of the stations have fairly good amplification characteristics in low frequency band. However, some of the seismic stations show one (resonant frequency specific to the site) or several local peaks of amplification factors with narrow high frequency band. Even though the site amplification characteristics are important information, we should be careful to analyse the observed ground motions from the seismic stations which have several very high amplification peaks for the deconvolution of seismic source and attenuation parameters.

Average spectral acceleration: Ground motion duration evaluation

  • Osei, Jack Banahene;Adom-Asamoah, Mark
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.577-587
    • /
    • 2018
  • The quantitative assessment of the seismic collapse risk of a structure requires the usage of an optimal intensity measure (IM) which can adequately characterise the severity of the ground motion. Research suggests that the average spectral acceleration ($Sa_{avg}$) may be an efficient and sufficient alternate IM as compared to the more traditional first mode spectral acceleration, $Sa(T_1)$, particularly during seismic collapse risk estimation. This study primarily presents a comparative evaluation of the sufficiency of the average spectral acceleration with respect to ground motion duration, and secondarily assesses the impact of ground motion duration on collapse risk estimation. By assembling a suite of 100 historical ground motions, incremental dynamic analysis of 60 different inelastic single-degree-of-freedom (SDF) oscillators with varying periods and ductility capacities were analysed, and collapse risk estimates obtained. Linear regression models are used to comparatively quantify the sufficiency of $Sa_{avg}$ and $Sa(T_1)$ using four significant duration metrics. Results suggests that an improved sufficiency may exist for $Sa_{avg}$ when the period of the SDF system increases, particularly beyond 0.5, as compare to $Sa(T_1)$. In reference to the ground motion duration measures, results indicated that the sufficiency of $Sa_{avg}$ is more sensitive to significant duration definitions that consider almost the full wave train of an accelerogram ($SD_{a5-95}$ and $SD_{v5-95}$). In order to obtain a reduced variability of the collapse risk estimate, the 5-95% significant duration metric defined using the Arias integral ($SD_{a5-95}$) should be used for seismic collapse risk estimation in conjunction with $Sa_{avg}$.

Predictive Equations of Ground Motions in Korea

  • Noh, Myung-Hyun
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.171-179
    • /
    • 2006
  • Predictive equations of ground motions are one of the most important factors in the seismic hazard analysis. Unfortunately, studies on predictive equations of ground motions in Korea had been hampered due to the lack of seismic data. To overcome the lack of data, seismologists adopted the stochastic method based on the seismological model. Korean predictive equations developed by the stochastic method show large differences in their predictions. It was turned out through the analysis of the existing studies that the main sources of the differences are the uncertainties in the (Brune) stress drop and spectral decay rate . Therefore, it is necessary to focus the future research on the reduction of the uncertainties in the two parameters.

  • PDF

Structural Safety Analysis of a Long Span Cable-stayed Bridge with a Partially Earth Anchored Cable System on Dynamic Loads during Construction (일부타정식 케이블 시스템 장경간 사장교의 시공 중 동적 안전성 분석)

  • Won, Jeong-Hun;Kim, Gyeoung Yun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.104-110
    • /
    • 2016
  • The effect of a partially earth anchored cable system on the structural safety of a long span cable-stayed bridge under seismic and wind loads are examined during construction process. By assuming the FCM (free cantilever method) construction stages with structural vulnerability, a multi-mode spectral analysis and a multi-mode buffeting analysis are performed for specific seismic load and wind load, respectively. Results show that the wind load dominates the structural safety of a cable-stayed bridge during construction. And, the application of a partially earth anchored cable system can enhance structural safety under wind load since the maximum pylon moment in the model with partially earth anchored cable system is reduced by 49% under wind load. In contrast, the maximum pylon moment occurred by seismic load is only decreased by 8%.

Seismic Integrity Analysis of an Electric Distributing Board Using the Response Spectra Analysis Method (응답스펙트럼해석법을 이용한 배전반의 내진건전성 해석)

  • Choi, Young-Hyu;Kim, Soo-Tae;Seol, Sang-Seok;Moon, Sung-Choon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.45-51
    • /
    • 2020
  • In this study, a response spectrum analysis of an electric distributing board (EDB) was conducted to investigate seismic integrity in the design stage. For the seismic analysis, the required response spectra of a safe shutdown earthquake with 2% damping (RRS/SSE-2%) specified in GR-63-CORE Zone 4 was used as the ground spectral acceleration input. A finite element method modal analysis of the EDB was also performed to examine the occurrence of resonance within the frequency range of the earthquake response spectrum. Furthermore, static stress caused by deadweight was analyzed. The resultant total maximum stress of the EDB structure was calculated by adding the maximum stresses from both seismic and static loads using the square root of the sum of the squares (SRSS) method. Finally, the structural safety of the EDB was investigated by comparing the resultant total maximum stress with the allowable stress.

Improvement of Spectral Displacement-Based Damage State Criteria of Existing Low-Rise, Piloti-Type Buildings (기존 저층 필로티 건물의 스펙트럼 변위 기반 손상도 기준 개선)

  • Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.201-211
    • /
    • 2021
  • The Ministry of the Interior and Safety in Korea developed seismic fragility function for various building types in 2009. Damage states for most building types were determined by structural analyses of sample models and foreign references because actual cases damaged by earthquakes rarely exist in Korea. Low-rise, piloti-type buildings showed severe damage by brittle failure in columns due to insufficient stirrup details in the 2017 Pohang earthquake. Therefore, it is necessary to improve damage state criteria for piloti-type buildings by consulting actual outcomes from the earthquake. An analytical approach was conducted by developing analysis models of sample buildings reflecting insufficient stirrup details of columns to accomplish the purpose. The result showed that current spectral displacements of damage states for piloti-type buildings might be too large to estimate actual fragility. When the brittle behavior observed in the earthquake is reflected in the analysis model, one-fourth through one-sixth of current spectral displacements of damage states may be appropriate for existing low-rise, piloti-type buildings.

Seismic Analysis of 3D-Truss by Response Spectrum (응답스펙트럼에 의한 트러스 구조물의 내진해석)

  • 안주옥;이승재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.159-168
    • /
    • 1999
  • In seismic analysis, there are two main ways - uniform load method and dynamic analysis, dynamic analysis can be divided into response spectrum analysis and time history analysis. In case of which get the complexion of the vibration with 3-axis of coordinate direction in each mode of free vibration mode happened owing to complication of the shape, 3-dimensional dynamic analysis is recommended to perform as multi-mode spectral analysis in standard specification for highway bridge. The purpose of this study is to understand the dynamic behavior by performing multi-mode seismic analysis according to responses analysis and time history anal)'sis in using record of earthquake. In accordance with the criterion of seismic design as defined in standard specification for highway bridge by using modified records of the El Centre and Coyote Lake earthquake, response spectrum was constructed by using the tripartite logarithmic plot. The 3-span continuous space truss bridge was selected as model of numerical analysis. As the result performed time history analysis and analysis of response spectrum for the model of numerical analysis, the result of time history analysis was slightly larger than that of response spectrum analysis. This coincide with the tendency of the result came from the analysis when using a jagged response spectrum analysis, This coincide with the tendency of the result came from the analysis when using a jagged response spectrum for a single excitation. In the Process of performing these two analysis. response spectrum analysis is more effective than time history analysis in saving times in analyzing data.

  • PDF

비 격리교량의 연성도를 목표로 하는 지진격리교량의 응답수정계수

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.432-439
    • /
    • 2000
  • According as ground acceleration becomes to exceed gravity acceleration recently, design is impossible or economical efficiency is poor in existing seismic design method. So increase of seismic isolated bridges is currently in progress. However, because base isolation design method is developed in high seismic regions. it may not be compatible in Korea. Therefore, this research has objective to evaluate ductility of pier and response modification factor according to the ductility of pier in seismic isolated bridges and to adapt to seismic characteristics in Korea. For this purpose, nonlinear analysis is accomplished with so many time histories derived from spectral density function compatible with response spectrum described in the design code and base isolation system modeled linear system, bi-linear system, and friction system. Through application of the proposed method, we had result that it may be compatible that response modification factor for the seismic isolated bridges is smaller than half of that for the conventional bridges when natural period of structures exceeds proper level.

  • PDF

Rapid seismic vulnerability assessment by new regression-based demand and collapse models for steel moment frames

  • Kia, M.;Banazadeh, M.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.203-214
    • /
    • 2018
  • Predictive demand and collapse fragility functions are two essential components of the probabilistic seismic demand analysis that are commonly developed based on statistics with enormous, costly and time consuming data gathering. Although this approach might be justified for research purposes, it is not appealing for practical applications because of its computational cost. Thus, in this paper, Bayesian regression-based demand and collapse models are proposed to eliminate the need of time-consuming analyses. The demand model developed in the form of linear equation predicts overall maximum inter-story drift of the lowto mid-rise regular steel moment resisting frames (SMRFs), while the collapse model mathematically expressed by lognormal cumulative distribution function provides collapse occurrence probability for a given spectral acceleration at the fundamental period of the structure. Next, as an application, the proposed demand and collapse functions are implemented in a seismic fragility analysis to develop fragility and consequently seismic demand curves of three example buildings. The accuracy provided by utilization of the proposed models, with considering computation reduction, are compared with those directly obtained from Incremental Dynamic analysis, which is a computer-intensive procedure.