• Title/Summary/Keyword: seismic shake table

Search Result 83, Processing Time 0.015 seconds

Fuzzy control of hybrid base-isolator with magnetorheological damper and friction pendulum system (MR 감쇠기와 FPS를 이용한 하이브리드 면진장치의 퍼지제어)

  • Kim, Hyun-Su;Roschke, P.N.;Lin, P.Y.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.61-70
    • /
    • 2005
  • Shaking table tests are carried out on a single-degree-of-freedom mass that is equipped with a hybrid base isolation system. The isolator consists of a set of four specially-designed friction pendulum systems (FPS) and a magnetorheological (MR) damper. The structure and its hybrid isolation system are subjected to various intensities of near- and far-fault earthquakes on a large shake table. The proposed fuzzy controller uses feedback from displacement or acceleration transducers attached to the structure to modulate resistance of the semi-active damper to motion. Results from several types of passive and semi-active control strategies are summarized and compared. The study shows that a combination of FPS isolators and an adjustable MR damper can effectively provide robust control of vibration for a large full-scale structure undergoing a wide variety of seismic loads.

Verifying ASCE 41 the evaluation model via field tests of masonry infilled RC frames with openings

  • Huang, Chun-Ting;Chiou, Tsung-Chih;Chung, Lap-Loi;Hwang, Shyh-Jiann;Jaung, Wen-Ching
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.157-174
    • /
    • 2020
  • The in-situ pushover test differs from the shake-table test because it is performed outdoors and thus its size is not restricted by space, which allows us to test a full-size building. However, to build a new full-size building for the test is not economical, consequently scholars around the world usually make scale structures or full-scale component units to be tested in the laboratory. However, if in-situ pushover tests can be performed on full-size structures, then the seismic behaviors of buildings during earthquakes can be grasped. In view of this, this study conducts two in-situ pushover tests of reinforced concrete (RC) buildings. One is a masonry-infilled RC building with openings (the openings ratio of masonry infill wall is between 24% and 51%) and the other is an RC building without masonry infill. These two in-situ pushover tests adopt obsolescent RC buildings, which will be demolished, to conduct experiment and successfully obtain seismic capacity curves of the buildings. The test results are available for the development or verification of a seismic evaluation model. This paper uses ASCE 41-17 as the main evaluation model and is accompanied by a simplified pushover analysis, which can predict the seismic capacity curves of low-rise buildings in Taiwan. The predicted maximum base shear values for masonry-infilled RC buildings with openings and for RC buildings without masonry infill are, respectively, 69.69% and 87.33% of the test values. The predicted initial stiffness values are 41.04% and 100.49% of the test values, respectively. It can be seen that the ASCE 41-17 evaluation model is reasonable for the RC building without masonry infill walls. In contrast, the analysis result for the masonry infilled RC building with openings is more conservative than the test value because the ASCE 41-17 evaluation model is limited to masonry infill walls with an openings ratio not exceeding 40%. This study suggests using ASCE 41-17's unreinforced masonry wall evaluation model to simulate a masonry infill wall with an openings ratio greater than 40%. After correction, the predicted maximum base shear values of the masonry infilled RC building with openings is 82.60% of the test values and the predicted initial stiffness value is 67.13% of the test value. Therefore, the proposed method in this study can predict the seismic behavior of a masonry infilled RC frame with large openings.

Seismic fragility analysis of bridge response due to spatially varying ground motions

  • Kun, C.;Li, B.;Chouw, N.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.297-316
    • /
    • 2015
  • The use of fragility curves in the design of bridges is becoming common these days. In this study, experimental data have been used to develop fragility curves for the potential of girder unseating of a three-segment bridge and a bridge-abutment system including the influence of spatially varying ground motions, pounding, and abutment movement. The ground excitations were simulated based on the design spectra for different soil conditions. The Newmarket Viaduct replacement bridge in Auckland was used as the prototype bridge. These fragility curves were also applied to the 2010 Darfield and 2011 Christchurch earthquakes. The study showed that for bridges with similar characteristics as the chosen prototype and with similar fundamental frequencies, pounding could increase the probability of girder unseating by up to 35% and 30% based on the AASHTO and NZTA seating length requirements, respectively. The assumption of uniform ground excitations in many design practices, such as the NZTA requirements, could potentially be disastrous as girders might have a very good chance of unseating (as much as 53% higher chances when considering spatial variation of ground motions) even when they are designed not to. In the case of superstructures with dissimilar frequencies, the assumption of fixed abutments could significantly overestimate the girder unseating potential when pounding was ignored and underestimate the chances when pounding was considered. Bridges subjected to spatially varying ground excitations simulated based on the New Zealand design spectra for soft soil conditions with weak correlation shows the highest chances of girders falling off, of up to 65% greater than for shallow soil excitations.