• 제목/요약/키워드: seismic sensors

검색결과 76건 처리시간 0.028초

시설물별 지진응답계측기 설치 운영에 관한 기준 및 지침 (Standard and Guideline for Installation and Management of Earthquake Instruments for Each Facilities)

  • 김재관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.458-467
    • /
    • 2000
  • The standard of performance-based seismic design accepted by Ministry of Construction and Transport requires to install and manage earthquake instruments for the facilities of seismic category I and to acquire earthquake response data of these facilities at earthquake events. So detailed standard and guideline for installation and management of earthquake instruments for each facilities according to the seismic design standard are getting ready. This paper presents the part of installation locations of sensors in that detaile standard and guideline.

  • PDF

지진하중 및 임의의 하중을 받는 배관 시스템에 대한 응답을 추정하기 위한 데이터 기반 디지털 트윈 (Data-Driven Digital Twin for Estimating Response of Pipe System Subjected to Seismic Load and Arbitrary Loads)

  • 김동창;김건규;곽신영;임승현
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.231-236
    • /
    • 2023
  • The importance of Structural Health Monitoring (SHM) in the industry is increasing due to various loads, such as earthquakes and wind, having a significant impact on the performance of structures and equipment. Estimating responses is crucial for the effective health management of these assets. However, using numerous sensors in facilities and equipment for response estimation causes economic challenges. Additionally, it could require a response from locations where sensors cannot be attached. Digital twin technology has garnered significant attention in the industry to address these challenges. This paper constructs a digital twin system utilizing the Long Short-Term Memory (LSTM) model to estimate responses in a pipe system under simultaneous seismic load and arbitrary loads. The performance of the data-driven digital twin system was verified through a comparative analysis of experimental data, demonstrating that the constructed digital twin system successfully estimated the responses.

효동리 시추공 관측소의 배경잡음 특성 (Back Ground Noise of Borehole Seismic Data at Hyodongri)

  • 신진수
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.41-48
    • /
    • 2000
  • We have installed the borehole seismic recording system at Hyodongri in eastern part of Kyungsan Basin, which has the advantages of reduction in noise by human activities and distorting effects of near-surface rocks. Here we describe briefly the borehole seismic station and recording system. And we analyse the characteistics of back ground the station obtained from borehole sensors. The back ground noise level in time domain is about 50~100$\mu$cm/sec. The average curve of noise spectrum is lower than NHNM(New High Noise Model)of GSN(Global Seismic Network)operated by USGS. The results could be useful prior information for study on earthquake records observed at Hydongri station.

  • PDF

전력연구원 지진관측망 계측지진 분석을 사전자료 처리 (Data Processing of earthquake data from KEPRI seismic monitoring system)

  • 연관희
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.58-65
    • /
    • 2001
  • It is essential to know exactly what the response of the seismograph is inclusive of characteristic of the seismic sensors before using it for detailed seismic study. This is because the recorded earthquake data can be more or less affected by the overall system and need to be corrected properly to the analysis`s best to obtain the right results. In this respect, two basic earthquake data processing techniques are introduced and applied, for validation purpose, to real data from KEPRI seismic monitoring system which were established for determining the site-specific characteristics of the earthquakes around the Nuclear Power Plants. One is conventional instrumental correction technique for velocity data and the other is for removing acausal ringing originate from using linear phase FIR filter. These techniques are all implemented in the time domain using digital filtering process and shows the desired results when applied to real earthquake data.

  • PDF

Post earthquake performance monitoring of a typical highway overpass bridge

  • Iranmanesh, A.;Bassam, A.;Ansari, F.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.495-505
    • /
    • 2009
  • Bridges form crucial links in the transportation network especially in high seismic risk regions. This research aims to provide a quantitative methodology for post-earthquake performance evaluation of the bridges. The experimental portion of the research involved shake table tests of a 4-span bridge which was subjected to progressively increasing amplitudes of seismic motions recorded from the Northridge earthquake. As part of this project, a high resolution long gauge fiber optic displacement sensor was developed for post-seismic evaluation of damage in the columns of the bridge. The nonlinear finite element model was developed using Opensees program to simulate the response of the bridge and the abutments to the seismic loads. The model was modified to predict the bent displacements of the bridge commensurate with the measured bent displacements obtained from experimental analysis results. Following seismic events, the tangential stiffness matrix of the whole structure is reduced due to reduction in structural strength. The nonlinear static push over analysis using current damaged stiffness matrix provides the longitudinal and transverse ultimate capacities of the bridge. Capacity loss in the transverse and longitudinal directions following the seismic events was correlated to the maximum displacements of the deck recorded during the events.

Seismic and vibration tests for assessing the effectiveness of GFRP for retrofitting masonry structures

  • Michelis, Paul;Papadimitriou, Costas;Karaiskos, Grigoris K.;Papadioti, Dimitra-Christina;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • 제9권3호
    • /
    • pp.207-230
    • /
    • 2012
  • Full-scale shake table seismic experiments and low-amplitude vibration tests on a masonry building are carried out to assess its seismic performance as well as study the effectiveness of a new multifunctional textile material for retrofitting masonry structures against earthquakes. The un-reinforced and the retrofitted with glass fiber reinforced polymer (GFRP) strips masonry building was subjected to a series of earthquake excitations of increasing magnitude in order to progressively induce various small, moderate and severe levels of damage to the masonry walls. The performance of the original and retrofitted building states is evaluated. Changes in the dynamic characteristics (lowest four modal frequencies and damping ratios) of the building are used to assess and quantify the damage states of the masonry walls. For this, the dynamic modal characteristics of the structure states after each earthquake event were estimated by performing low-amplitude impulse hammer and sine-sweep forced vibration tests. Comparisons between the modal results calculated using traditional accelerometers and those using Fiber Bragg Grating (FBG) sensors embedded in the reinforcing textile were carried on to investigate the reliability and accuracy of FBG sensors in tracking the dynamic behaviour of the building. The retrofitting actions restored the stiffness characteristics of the reinforced masonry structure to the levels of the original undamaged un-reinforced structure. The results show that despite a similar dynamic behavior identified, corresponding to reduction of the modal frequencies, the un-reinforced masonry building was severely damaged, while the reinforced masonry building was able to withstand, without visual damage, the induced strong seismic excitations. The applied GFRP reinforcement architecture for one storey buildings was experimentally proven reliable for the most severe earthquake accelerations. It was easily placed in a short time and it is a cost effective solution (covering only 20% of the external wall surfaces) when compared to the cost for full wall coverage by GFRPs.

수직하중 계측을 위한 FBG센서 기반 스마트 교량 내진장치의 개발 (Development of Smart Seismic Device Using FBG Sensor for Measuring Vertical Load)

  • 장성진;김남식;백준호
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1089-1098
    • /
    • 2012
  • A faulting could be occurred at the end of deck by unexpected loads to bridge bearing after a bridge completion. Serviceability of bridges could be impaired by the faulting which is caused structural damage. Therefore, smart bridge bearing which can continuously observe the supporting points is needed. Some of bridge bearings have been developed for measuring vertical load and vertical displacement by installing sensors in the bearing. In those systems, however it is not easy to be replaced with new sensors when repairs are needed. In this study, the smart bridge bearing of which sensors can be replaced has been developed to overcome such a problem. In this study, strain signals were used for measuring both of vertical displacements and loads. FBG sensors(fiber optic Bragg-grating sensors) have been used for measurement of the strain signals since it is prevented from electronic noise by mediating light, enables the simplification of the measuring cable by multiple measurement, and is easy to place by lightweight and small size. The possibility of use was reviewed for smart bridge bearing based on FBG sensors through tests.

압저항 가속도 센서의 압저항 변화율 분포도에 관한 연구 (The Study on Piezoresistance Change Ratio of Cantilever type Acceleration Sensor)

  • 심재준;한근조;한동섭;이성욱;김태형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.186-189
    • /
    • 2004
  • Sensor used by semiconductor process produced an MAP sensor and applied to several industry. Among those sensors divided as transducer which convert physical quantity into electrical value, piezoresistive type sensor has been studied for the properties and sensitivity of piezoresistor. In this paper, the variation of seismic mass which have been functioned as actuator moving the cantilever beam analyzed the effect on distribution of resistance change ratio and supposed the optimal shape and position of piezoresistor. The resulting are following; According to the increment of seismic mass size, the value of resistance change ratio decreased caused by improve the stiffness. Y directional piezoresistor is formed in spot of 100 m apart from cantilever edge and length of that is 800$\mu$m. To increase the sensitivity, piezoresistor is made as n-type and x-direction.

  • PDF

그루브 조인트가 설치된 수계소화설비 입상배관계통의 지진거동분석을 위한 실험적 연구 (Experimental Study for Seismic Behavior Analysis of a Fire Protection Riser Pipe System with Groove Joints)

  • 김성완;윤다운;김재봉;전법규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권2호
    • /
    • pp.35-42
    • /
    • 2021
  • 본 연구에서는 NFPA 13을 참조하여 구조물 2층을 구현한 강재지그를 제작하였으며, 그루브 조인트의 배관연결재가 적용된 배관계통을 구성하고 정적 반복가력에 의한 지진모사실험을 수행하였다. 지진모사실험은 엑츄에이터로 건축물 내진설계기준의 최대허용 층간변위에 대한 반복가력실험을 수행하였다. 지진하중 발생 시 입상배관의 구조물에 대한 변형 또는 구조부재간의 상대변위에 의한 변위지배적인 거동에 따른 배관계통과 주요 배관요소의 지진거동을 분석하였다. 배관계통의 변형각은 기존의 센서를 이용하여 측정하기가 어려우므로 이미지측정시스템을 적용하였다.

Seismic protection of base isolated structures using smart passive control system

  • Jung, Hyung-Jo;Choi, Kang-Min;Park, Kyu-Sik;Cho, Sang-Won
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.385-403
    • /
    • 2007
  • The effectiveness of the newly developed smart passive control system employing a magnetorheological (MR) damper and an electromagnetic induction (EMI) part for seismic protection of base isolated structures is numerically investigated. An EMI part in the system consists of a permanent magnet and a coil, which changes the kinetic energy of the deformation of an MR damper into the electric energy (i.e. the induced current) according to the Faraday's law of electromagnetic induction. In the smart passive control system, the damping characteristics of an MR damper are varied with the current input generated from an EMI part. Hence, it does not need any control system consisting of sensors, a controller and an external power source. This makes the system much simpler as well as more economic. To verify the efficacy of the smart passive control system, a series of numerical simulations are carried out by considering the benchmark base isolated structure control problems. The numerical simulation results show that the smart passive control system has the comparable control performance to the conventional MR damper-based semiactive control system. Therefore, the smart passive control system could be considered as one of the promising control devices for seismic protection of seismically excited base isolated structures.