• Title/Summary/Keyword: seismic safety assessment

Search Result 216, Processing Time 0.029 seconds

Evaluation of Seismic Margin of Existing Steel Structure Based on Seismic Margin Assessment (내진여유도평가법에 근거한 기존 강구조물의 내진성능평가)

  • 황규호;송정국;강선구;서용표
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.239-249
    • /
    • 2002
  • The Turbine Building of nuclear power plant is classified as non safety-related structure. During the operation, there may be possibility the original licensing basis would be changed, which makes non safety-related structure safety-related. Such a change in regulation requires utility to perform seismic qualification for the existing structure and their facilities. Thus it is meaningful to evaluate seismic margin of the existing non-qualified building structure. In addition, in this paper it is shown that a modification to the structure can enhance their seismic capacity.

  • PDF

Combination Procedure for Seismic Correlation Coefficient in Fragility Curves of Multiple Components (다중기기 취약도곡선의 지진상관계수 조합 절차)

  • Kim, Jung Han;Kim, Si Young;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.141-148
    • /
    • 2020
  • For the important safety system, two or more units of identical equipment or redundant components with similar function were installed to prevent abnormal failure. If the failure probability of such equipment is independent, this redundancy could increase the system safety remarkably. However, if the failure of each component is highly correlated by installing in a structure or experiencing an earthquake event, the expected redundancy effect will decrease. Therefore, the seismic correlation of the equipment should be evaluated quantitatively for the seismic probabilistic safety assessment. The correlation effect can be explained in the procedure of constructing fragility curves. In this study, several methodologies to quantify the seismic correlation in the failure probability calculation for multiple components were reviewed and two possible ways considering the realistic situation were selected. Simple examples were tested to check the applicability of these methods. The conversion method between these two methods was suggested to render the evaluation using the advantages of each method possible.

Seismic Performance Improvement of Concrete Gravity Dam by Post-tensioned Anchors (앵커공법을 적용한 기존 콘크리트 중력식 댐의 내진성능 보강방안)

  • Kim, Yongon;Kim, Se-Il;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.49-53
    • /
    • 2013
  • This paper describes the assessment of seismic performance of the concrete gravity dam seismically reinforced by post-tensioned anchors. In order to evaluate the seismic performance, the response spectrum analyses have been carried out for 7 different configurations of the post-tensioned anchors, and then their performance improvement in the maximum tensile and compressive stresses is compared to each other. The comparative results demonstrate that the layout of the post-tensioned anchors strongly influences the seismic performance of the concrete gravity dam. In this study, the slightly-inclined vertical anchorage system shows the largest improvement on the overall performance of the seismically-excited concrete gravity dam.

Seismic Response Analysis of Nuclear Power Plant Structures and Equipment due to the Pohang Earthquake (포항지진에 대한 원자력발전소 구조물 및 기기의 지진응답분석)

  • Eem, Seung-Hyun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.113-119
    • /
    • 2018
  • The probabilistic seismic safety assessment is one of the methodology to evaluate the seismic safety of the nuclear power plants. The site characteristics of the nuclear power plant should be reflected when evaluating the seismic safety of the nuclear power plant. The Korea seismic characteristics are strong in high frequency region and may be different from NRC Regulatory Guide 1.60, which is the design spectrum of nuclear power plants. In this study, seismic response of a nuclear power plant structure by Pohang earthquake (2017.11.15. (KST)) is investigated. The Pohang earthquake measured at the Cheongsong seismic observation station (CHS) is scaled to the peak ground acceleration (PGA) of 0.2 g and the seismic acceleration time history curve corresponding to the design spectrum is created. A nuclear power plant of the containment building and the auxiliary buildings are modeled using OPENSEES to analyze the seismic response of the Pohang earthquake. The seismic behavior of the nuclear power plant due to the Pohang earthquake is investigated. And the seismic performances of the equipment of a nuclear power plant are evaluated by the HCLPF. As a result, the seismic safety evaluation of nuclear power plants should be evaluated based on site-specific characteristics of nuclear power plants.

Collapse Probability of a Low-rise Piloti-type Building Considering Domestic Seismic Hazard (국내 지진재해도를 고려한 저층 필로티 건물의 붕괴 확률)

  • Kim, Dae-Hwan;Kim, Taewan;Chu, Yurim
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.485-494
    • /
    • 2016
  • The risk-based assessment, also called time-based assessment of structure is usually performed to provide seismic risk evaluation of a target structure for its entire life-cycle, e.g. 50 years. The prediction of collapse probability is the estimator in the risk-based assessment. While the risk-based assessment is the key in the performance-based earthquake engineering, its application is very limited because this evaluation method is very expensive in terms of simulation and computational efforts. So the evaluation database for many archetype structures usually serve as representative of the specific system. However, there is no such an assessment performed for building stocks in Korea. Consequently, the performance objective of current building code, KBC is not clear at least in a quantitative way. This shortcoming gives an unresolved issue to insurance industry, socio-economic impact, seismic safety policy in national and local governments. In this study, we evaluate the comprehensive seismic performance of an low-rise residential buildings with discontinuous structural walls, so called piloti-type structure which is commonly found in low-rise domestic building stocks. The collapse probability is obtained using the risk integral of a conditioned collapse capacity function and regression of current hazard curve. Based on this approach it is expected to provide a robust tool to seismic safety policy as well as seismic risk analysis such as Probable Maximum Loss (PML) commonly used in the insurance industry.

How does the knowledge level affect the seismic retrofit cost? The case study of a RC building

  • Miano, Andrea;Chiumiento, Giovanni;Formisano, Antonio;Prota, Andrea
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.557-569
    • /
    • 2022
  • The retrofit of existing structures in high seismic zones is a crucial issue in the earthquake engineering field. The interest of the research community is particularly high for the structures that do not respect current seismic codes and present structural deficiencies such as poor detailing and lack of capacity design provisions. A reinforced concrete (RC) school building is used as case study to show the influence of different knowledge levels on the seismic retrofitting cost assessment. The safety assessment of the case study building highlights deficiencies under both vertical and seismic loads. By considering all the possible knowledge levels defined by the Italian such as by the European codes in order to derive the mechanical properties of the school building constitutive materials, the retrofit operations are designed to achieve different seismic safety thresholds. The retrofit structural costs are calculated and summed up to the costs for in-situ in tests. The paper shows how for the case study building the major costs spent for a large number of in-situ tests allows to save a consistent amount of money for retrofit operations. The hypothesis of demolition and reconstruction of the building is also compared in terms of costs with all the analyzed retrofit options.

Inelastic Energy Absorption Factor for the Seismic Probabilistic Risk Assessment of NPP Containment Structure (확률론적 지진위험도 분석을 위한 원전 격납건물의 비탄성에너지 흡수계수 평가)

  • 최인길;서정문
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.5
    • /
    • pp.47-56
    • /
    • 2001
  • In order to assure the safety of NPP structures, margin of safety or conservatism is incorporated in each design step. Seismic risk evaluation of NPP structures is performed based on the realistic capacity and response of structure eliminated the safety margin and conservatism. In this study, the comparative study on the various evaluation methods of the inelastic energy absorption capacity was performed. The inelastic energy absorption capacity due to the nonlinear behavior of structures has significant effect on the results of seismic probabilistic risk assessment. And the comparison study of the HCLPF(high confidence of low probability of failure) values according to the inelastic energy absorption factors was performed. As a conclusion, the inelastic energy absorption factor of NPP containment structure is estimated about 1.5~1.75. It is essential to estimate the nonlinear behavior of structure and its ductility factor correctly for the seismic risk assessment.

  • PDF