• Title/Summary/Keyword: seismic resistant

Search Result 292, Processing Time 0.032 seconds

Fragility assessment of RC-MRFs under concurrent vertical-horizontal seismic action effects

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Mansouri, Babak
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.99-123
    • /
    • 2015
  • In this study, structural vulnerability of reinforced concrete moment resisting frames (RC-MRFs) by considering the Iran-specific characteristics is investigated to manage the earthquake risk in terms of multicomponent seismic excitations. Low and medium rise RC-MRFs, which constitute approximately 80-90% of the total buildings stock in Iran, are focused in this fragility-based assessment. The seismic design of 3-12 story RC-MRFs are carried out according to the Iranian Code of Practice for Seismic Resistant Design of Buildings (Standard No. 2800), and the analytical models are formed accordingly in open source nonlinear platforms. Frame structures are categorized in three subclasses according to the specific characteristics of construction practice and the observed seismic performance after major earthquakes in Iran. Both far and near fields' ground motions have been considered in the fragility estimation. An optimal intensity measure (IM) called Sa, avg and beta probability distribution were used to obtain reliable fragility-based database for earthquake damage and loss estimation of RC buildings stock in urban areas of Iran. Nonlinear incremental dynamic analyses by means of lumped-parameter based structural models have been simulated and performed to extract the fragility curves. Approximate confidence bounds are developed to represent the epistemic uncertainties inherent in the fragility estimations. Consequently, it's shown that including vertical ground motion in the analysis is highly recommended for reliable seismic assessment of RC buildings.

Seismic Fragility Analysis of Buildings With Combined Shear Wall-Damper System (벽체-감쇠 복합시스템을 갖는 건물의 지진취약도 분석)

  • Rajibul Islam;Sudipta Chakraborty;Kong, ByeongJin;Kim, Dookie
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.91-99
    • /
    • 2023
  • Structural vibration induced by earthquake hazards is one of the most significant concerns in structure performance-based design. Structural hazards evoked from seismic events must be properly identified to make buildings resilient enough to withstand extreme earthquake loadings. To investigate the effects of combined earthquake-resistant systems, shear walls and five types of dampers are incorporated in nineteen structural models by altering their arrangements. All the building models were developed as per ACI 318-14 and ASCE 7-16. Seismic fragility curves were developed from the incremental dynamic analyses (IDA) performed by using seven sets of ground motions, and eventually, by following FEMA P695 provisions, the collapse margin ratio (CMR) was computed from the collapse curves. It is evident from the results that the seismic performance of the proposed combined shear wall-damper system is significantly better than the models equipped with shear walls only. The scrutinized dual seismic resisting system is expected to be applied practically to ensure a multi-level shield for tall structures in high seismic risk zones.

TUTUM Easy-seismic: Development of a Seismic Design Automation Software for Building Fire Protection Systems (TUTUM Easy-seismic: 소방시설 내진설계 자동화 소프트웨어 개발)

  • Oh, Chang-Soo;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.140-148
    • /
    • 2019
  • In line with the "mandatory seismic design of fire protection facilities," development of design automation software is indispensable for improving the reliability and efficiency of seismic design. The seismic design automation software developed in this study is an automated S/W for seismic design of fire-fighting facilities, and functions such as automatic arrangement of anti-shake braces according to Korea National Fire Agency's Seismic Design Standards for fire-fighting facilities, output of seismic bracing calculation bills and automatic quantities counting. In addition, the seismic design automation software not only reduces the work speed by three times compared to the manual design of the designer, but also improves the reliability of the design by reducing the human error related to the design quantity such as the brace. In addition, in the seismic design method of fire protection facilities that have been approached conservatively, it was possible to perform the optimal seismic design by using computer algorithms for at least in the use of braces.

A study on the quantity of shear-wall by seismic retrofit of wall-type apartment (벽식 아파트 내진보강을 위한 신설벽체 벽량에 관한 연구)

  • Jung, Woo-Kyung;Hong, Geon-Ho;Song, Jin-Gyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.169-172
    • /
    • 2006
  • Wall construction apartment built before 1988 years need internal examination reinforcement according to existing laws ans regulations at remodeling because do not earthquake resistant design. Established newly wall to interest paid back at the same time a the principal direction for wall construction apartment internal examination reinforcement, and satisfied internal examination standard because uses width displacement between floor. This study analyzes displacement value such as latitude and presented position of efficient reinforcement wall and wall quantity at earthquake resistant design of wall construction apartment.

  • PDF

Performance-Based Seismic Design of Reinforced Concrete Building Structures Using Inelastic Displacements Criteria

  • Kabeyaswa, Toshimi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.61-71
    • /
    • 1998
  • A performance-based seismic design method for reinforced concrete building structures being developed in Japan is outlined. Technical and scientific background of the performance-based design philosophy as well as recently developed seismic design guidelines are is presented, in which maximum displacement response to design earthquake motion is used as the limit-state design criteria. A method of estimating dynamic response displacement of the structures based on static nonlinear analysis is described. A theoretical estimation of nonlinear dynamic response considering the characteristics of energy input to the system is described in detail, which may be used as the standard method in the new performance-based code. A desing philosophy not only satisfying the criteria but also evaluating seismic capacity of the structures is also introduced.

  • PDF

Modal pushover analysis of self-centering concentrically braced frames

  • Tian, Li;Qiu, Canxing
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.251-261
    • /
    • 2018
  • Self-centering concentrically braced frames (SCCBFs) are emerging as high performance seismically resistant braced framing system, due to the capacity of withstanding strong earthquake attacks and promptly recovering after events. To get a further insight into the seismic performance of SCCBFs, systematical evaluations are currently conducted from the perspective of modal contributions. In this paper, the modal pushover analysis (MPA) approach is utilized to obtain the realistic seismic demands by summarizing the contribution of each single vibration mode. The MPA-based results are compared with the exact results from nonlinear response history analysis. The adopted SCCBFs originate from existing buckling-restrained braced frames (BRBF), which are also analyzed for purpose of comparison. In the analysis of these comparable framing systems, interested performance indices that closely relate to the structural damage degree include the interstory drift ratio, floor acceleration, and absorbed hysteretic energy. The study shows that the MPA approach produces acceptable predictions in comparison to the exact results for SCCBFs. In addition, the high-modes effect on the seismic behavior increases with the building height, and is more evident in the SCCBFs than the BRBFs.

Inelastic displacement-based design approach of R/C building structures in seismic regions

  • Rubinstein, Marcelo;Moller, Oscar;Giuliano, Alejandro
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.573-594
    • /
    • 2001
  • A two-level displacement-based design procedure is developed. To obtain the displacement demands, elastic spectra for occasional earthquakes and inelastic spectra for rare earthquakes are used. Minimum global stiffness and strength to be supplied to the structure are based on specified maximum permissible drift limits and on the condition that the structure responds within the elastic range for occasional earthquakes. The performance of the structure may be assessed by an inelastic push-over analysis to the required displacement and the evaluation of damage indices. The approach is applied to the design of a five-story reinforced concrete coupled wall structure located in the most hazardous seismic region of Argentina. The inelastic dynamic response of the structure subjected to real and artificially generated acceleration time histories is also analyzed. Finally, advantages and limitations of the proposed procedure from the conceptual point of view and practical application are discussed.

Sensitivity analysis to determine seismic retrofitting column location in reinforced concrete buildings

  • Seo, Hyunsu;Park, Kyoungsub;Kwon, Minho;Kim, Jinsup
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.77-86
    • /
    • 2021
  • Local school buildings are critical facilities that can provide shelter in disasters such as earthquakes, so they must be more resistant to seismic forces than other structures. In this study, a sensitivity analysis was conducted to determine which columns-as the most critical members in a reinforced concrete building-most urgently require seismic retrofitting. The sensitivity analysis was conducted using an optimization technique with the location of each column as a parameter. A numerical model was developed to simulate a realistic collapse mode through a three-dimensional dynamic analysis. Based on numerical analysis results, it was found that the columns positioned in the lower floors, such as the first floor and in the outer part of a building, urgently require retrofitting. For reinforcement of the RC columns, which has been proven for its performance in previous research, was applied. Through this study, the importance of appropriate retrofitting is demonstrated. Further, a method for determining the appropriate location for retrofitting-when retrofitting is not possible on the entire structure-is presented.

Seismic Performance and Vibration Control of Urban Over-track High-rise Buildings

  • Ying, Zhou;Rui, Wang;Zengde, Zhang
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.207-219
    • /
    • 2022
  • During the structural design of urban over-track high-rise buildings, two problems are most likely encountered: the abrupt change of story stiffness between the podium and the upper towers, as well as the demand for train-induced vibration control. Traditional earthquake-resistant structures have to be particularly designed with transfer stories to meet the requirement of seismic control under earthquakes, and thus horizontal seismic isolation techniques are recommended to solve the transfer problem. The function of mitigating the vertical subway-induced vibration can be integrated into the isolation system including thick rubber bearings and 3D composite vibration control devices. Engineering project cases are presented in this paper for a more comprehensive understanding of the engineering practice and research frontiers of urban over-track high-rise buildings in China.

Linear Seismic Performance Evaluation Procedure of the Low-Rise Reinforced Concrete Facilities (저층 철근 콘크리트 시설물 선형 내진 성능 평가)

  • Kim, Doo-Hwan;Jeong, Ui-Do;Song, Kwan Kwon;Kim, Seong Pil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.129-135
    • /
    • 2018
  • Following a 5.8 magnitude earthquake on September 12, 2016 in Gyeongju Province, a magnitude 5.4 earthquake occurred in the northern region of Pohang City on November 15, 2017 in South Korea. Only 7.9 % of the building structures are earthquake-resistant, according to the recent survey conducted by the government agencies in October 2017. In this paper, the linear analysis seismic performance evaluation procedure of the existing school structures presented in the revised methodology(Seismic Performance Evaluation Procedure and Rehabilitation Manual for School Facilities) was introduced. In this paper, the linear analysis evaluation procedure presented in the revised methodology was introduced and the seismic performance index of the example structure was evaluated using the linear analysis evaluation procedure. The seismic retrofit was verified by the linear and nonlinear dynamic analyses using Perform 3D. The analysis results show that the dissipated inelastic energy is concentrated on the retrofitted shear wall and the maximum inter-story drift of the stadium model structure with damping system satisfies the requirement of the current code.