• 제목/요약/키워드: seismic resilience

검색결과 42건 처리시간 0.022초

Displacement-based design method for an energy-dissipation self-centering wall panel structure

  • Sisi Chao;Guanqi Lan;Hua Huang;Huiping Liu;Chenghua Li
    • Steel and Composite Structures
    • /
    • 제51권3호
    • /
    • pp.289-304
    • /
    • 2024
  • The seismic performance of traditional steel frame-shear wall structures was significantly improved by the application of self-centering steel-reinforced concrete (SRC) wall-panel structures in the steel frames. This novel resilience functionality can rapidly restore the structure after an earthquake. The presented steel frame with steel-reinforced concrete self-centering wall-panel structures (SF-SCW) was validated, indicating its excellent seismic performance. The seismic design method based on bear capacity cannot correctly predict the elastic-plastic performance of the structure, especially certain weak floors that might be caused by a major fracture. A four-level seismic performance index, including intact function, continued utilization, life safety, and near-collapse, was established to achieve the ideal failure mode. The seismic design method, based on structural displacement, was proposed by considering performance objectives of the different seismic action levels. The pushover analysis of a six-floor SF-SCW structure was carried out under the proposed design method and the results showed that this six-floor structure could achieve the predicted failure mode.

Research on prefabricated concrete beam-column joint with high strength bolt-end plate

  • Shufeng, Li;Di, Zhao;Qingning, Li;Huajing, Zhao;Jiaolei, Zhang;Dawei, Yuan
    • Structural Engineering and Mechanics
    • /
    • 제74권3호
    • /
    • pp.395-406
    • /
    • 2020
  • Many prefabricated concrete frame joints have been proposed, and most of them showed good seismic performance. However, there are still some limitations in the proposed fabricated joints. For example, for prefabricated prestressed concrete joints, prefabricated beams and prefabricated columns are assembled as a whole by the pre-stressed steel bar and steel strand in the beams, which brings some troubles to the construction, and the reinforcement in the core area of the joints is complex, and the mechanical mechanism is not clear. Based on the current research results, a new type of fabricated joint of prestressed concrete beams and confined concrete columns is proposed. To study the seismic performance of the joint, the quasi-static test is carried out. The test results show that the nodes exhibit good ductility and energy dissipation. According to the experimental fitting method and the "fixed point pointing" law, the resilience model of this kind of nodes is established, and compared with the experimental results, the two agree well, which can provides a certain reference for elasto-plastic seismic response analysis of this type of structure. Besides, based on the analysis of the factors affecting the shear capacity of the node core area, the formula of shear capacity of the core area of the node is proposed, and the theoretical values of the formula are consistent with the experimental value.

Post-earthquake assessment of buildings using displacement and acceleration response

  • Hsu, Ting-Yu;Pham, Quang-Vinh
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.599-609
    • /
    • 2019
  • After an earthquake, a quick seismic assessment of a structure can facilitate the recovery of operations, and consequently, improve structural resilience. Especially for facilities that play a key role in rescue or refuge efforts (e.g., hospitals and power facilities), or even economically important facilities (e.g., high-tech factories and financial centers), immediately resuming operations after disruptions resulting from an earthquake is critical. Therefore, this study proposes a prompt post-earthquake seismic evaluation method that uses displacement and acceleration measurements taken from real structural responses that resulted during an earthquake. With a prepared pre-earthquake capacity curve of a structure, the residual seismic capacity can be estimated using the residual roof drift ratio and stiffness. The proposed method was verified using a 6-story steel frame structure on a shaking table. The structure was damaged during a moderate earthquake, after which it collapsed completely during a severe earthquake. According to the experimental results, a reasonable estimation of the residual seismic capacity of structures can be performed using the proposed post-earthquake seismic evaluation method.

Case Study On The Seismic Design Strategy For Post-Quake Functional Buildings In China

  • Peng Liu;Xue Li;Yu Cheng;Xiaoyu Gao;Jinai Zhang;Yongbin Liu
    • 국제초고층학회논문집
    • /
    • 제12권3호
    • /
    • pp.251-262
    • /
    • 2023
  • In response to China's "Regulations on the Management of Earthquake Resistance of Building Constructions" on the provision of eight types of important buildings to maintain functional after fortified earthquakes occur, "Guidelines for Seismic Design of post-quake functional buildings (Draft for Review)" distinguishes Class I and Class II buildings, and gives the performance objectives and seismic verification requirements for design earthquakes and severe earthquakes respectively. In this paper, a hospital and a school building are selected as examples to design according to the requirements of fortification of Intensity 8 and 7 respectively. Two design strategies, the seismic isolation scheme and energy dissipation scheme, are considered which are evaluated through elastic-plastic dynamic time-history analysis to meet the requirement of post-quake functional buildings. The results show that the seismic isolation design can meet the requirements in the above cases, and the energy dissipation scheme is difficult to meet the requirements of the "Guidelines" on floor acceleration in some cases, for which the scheme shall be made valid through the seismic resilience assessment. The research in this paper can provide a reference for designers to choose schemes for post-quake functional buildings.

학교시설 내진보강공사 시 발생하는 하자 유형 및 하자 발생 요인 연구 (Investigating Defect Types and Causative Factors in the Seismic Retrofitting of Educational Facilities)

  • 김문식;정대교;박현정;김대영
    • 한국건축시공학회지
    • /
    • 제24권1호
    • /
    • pp.55-66
    • /
    • 2024
  • 2016년 9월 경주지진, 2017년 11월 발생한 포항지진 이후 공공시설중 상대적으로 내진성능 보급이 부진하였던 학교시설의 경우 2017년~2019년 사이 2배 이상 보급되었다. 내진보강공사가 공급됨으로 늘어난 비중에 하자가 발생할 가능성이 존재한다. 정부는 오는 2035년까지 모든 공공시설에 내진성능보강공사를 완료하고 학교시설의 경우 2029년까지 내진성능보급을 완료하는 것으로 확인되었다. 이에 따라 선행연구를 고찰해보았고 학교시설공사에서 발생하는 하자에 관련한 연구가 진행되는 것으로 확인되었다. 하지만 마감공사에서 발생하는 하자 예방에 대한 연구가 진행되고 있었으며, 학교시설의 내진보강공사에서 발생하는 하자에 관련한 연구는 부족한 실정이었다. 따라서 본 연구는 내진보강공사에서 발생하는 하자 유형들을 조사하고 해당 원인들을 분석하여 하자예방의 중점관리요소를 도출할 것이다. 또한 궁극적으로 하자 유형과 원인간의 관계를 분석하여 중점관리요소를 선정함으로써 향후 내진보강공사를 진행함에 있어 시공단계에서 하자를 예방할 수 있고, 보수비용을 저감하는데 기여할 것이다.

Seismic resilience evaluation of RC-MRFs equipped with passive damping devices

  • Kamaludin, Puteri Nihal Che;Kassem, Moustafa Moufid;Farsangi, Ehsan Noroozinejad;Nazri, Fadzli Mohamed;Yamaguchi, Eiki
    • Earthquakes and Structures
    • /
    • 제18권3호
    • /
    • pp.391-405
    • /
    • 2020
  • The use of passive energy dissipation devices has been widely used in the construction industry to minimize the probability of damage occurred under intense ground motion. In this study, collapse margin ratio (CMR) and fragility curves are the main parameters in the assessment to characterize the collapse safety of the structures. The assessment is done on three types of RC frame structures, incorporating three types of dampers, viscoelastic, friction, and BRB dampers. The Incremental dynamic analyses (IDA) were performed by simulating an array of 20 strong ground motion (SGM) records considering both far-field and near-field seismic scenarios that were followed by fragility curves. With respect to far-field ground motion records, the CMR values of the selected frames indicate to be higher and reachable to safety margin more than those under near-field ground motion records that introduce a high devastating impact on the structures compared to far-field excitations. This implies that the near field impact affects the ground movements at the site by attenuation the direction and causing high-frequency filtration. Besides that, the results show that the viscoelastic damper gives better performance for the structures in terms of reducing the damages compared to the other energy dissipation devices during earthquakes.

Managing the Vulnerability of Megacities in North America and Europe to Seismic Hazards

  • Waugh, William L.
    • 한국화재소방학회논문지
    • /
    • 제15권2호
    • /
    • pp.20-30
    • /
    • 2001
  • The science and technology of seismic hazard mitigation are increasingly being shared among scientists and policy makers around the world. Administrative expertise is also being shared. While there is still tremendous unevenness in technical and administrative capacities and resources, a global community of emergency managers is developing and there is a globalization of expertise. Hazards are better understood, tools for risk assessment are improving, techniques for hazard mitigation are being perfected, and communities and states are implementing more comprehensive disaster preparedness, response, and recovery programs. Priorities are also emerging and hazard mitigation has emerged as the priority of choice in North America and Europe. An increasingly important component of hazard mitigation is resilience, in terms of increased capacities for disaster mitigation and recovery at the community and even individual levels. Each year, more is known about the locations and natures of seismic hazards, although there are still unknown and poorly understood fault lines and limited understanding of related disasters such as tsunamis and landslides. More is known about the impact of earthquakes on the built environment, although nature still provides surprises to confound man's best extorts to reduce risk. More is known about human nature and how people respond to uncertain risk and when confronted by certain catastrophe. However, despite the increased understanding of seismic phenomena and how to protect people and property, there is much that needs to be done to reduce the risk, particularly in major metropolitan areas.

  • PDF

지반-기초 영향을 고려한 교통신호등주의 지진응답 분석 (Seismic Response Investigation of Traffic Signal-Supporting Structures Including Soil-Foundation Effects)

  • 김태현;전종수;노화성
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.237-244
    • /
    • 2023
  • This study analyzes the seismic response of traffic light poles, considering soil-foundation effects through nonlinear static and time history analyses. Two poles are investigated, uni-directional and bi-directional, each with 9 m mast arms. Finite element models incorporate the poles, soil, and concrete foundations for analysis. Results show that the initial stiffness of the traffic light poles decreases by approximately 38% due to soil effects, and the drift ratio at which their nonlinear behavior occurs is 77% of scenarios without considering soil effects. The maximum acceleration response increases by about 82% for uni-directional poles and 73% for bi-directional poles, while displacement response increases by approximately 10% for uni-directional and 16% for bi-directional poles when considering soil-foundation effects. Additionally, increasing ground motion intensity reduces soil restraints, making significant rotational displacement the dominant response mechanism over flexural displacement for the traffic light poles. These findings underscore the importance of considering soil-foundation interactions in analyzing the seismic behavior of traffic light poles and provide valuable insights to enhance their seismic resilience and safety.

Seismic behavior and design method of socket self-centering bridge pier with hybrid energy dissipation system

  • Guo, Mengqiang;Men, Jinjie;Fan, Dongxin;Shen, Yanli
    • Earthquakes and Structures
    • /
    • 제23권3호
    • /
    • pp.271-282
    • /
    • 2022
  • Seismic resisting self-centering bridge piers with high energy dissipation and negligible residual displacement after an earthquake event are focus topics of current structural engineering. The energy dissipation components of typical bridge piers are often relatively single; and exhibit a certain level of damage under earthquakes, leading to large residual displacements and low cumulative energy dissipation. In this paper, a novel socket self-centering bridge pier with a hybrid energy dissipation system is proposed. The seismic resilience of bridge piers can be improved through the rational design of annular grooves and rubber cushions. The seismic response was evaluated through the finite element method. The effects of rubber cushion thickness, annular groove depth, axial compression ratio, and lateral strength contribution ratio of rubber cushion on the seismic behavior of bridge piers are systematically studied. The results show that the annular groove depth has the greatest influence on the seismic performance of the bridge pier. Especially, the lateral strength contribution ratio of the rubber cushion mainly depends on the depth of the annular groove. The axial compression ratio has a significant effect on the ultimate bearing capacity. Finally, the seismic design method is proposed according to the influence of the above research parameters on the seismic performance of bridge piers, and the method is validated by an example. It is suggested that the range of lateral strength contribution ratio of rubber cushion is 0.028 ~ 0.053.

Effects of sheds and cemented joints on seismic modelling of cylindrical porcelain electrical equipment in substations

  • Li, Sheng;Tsang, Hing-Ho;Cheng, Yongfeng;Lu, Zhicheng
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.55-65
    • /
    • 2017
  • Earthquake resilience of substations is essential for reliable and sustainable service of electrical grids. The majority of substation equipment consists of cylindrical porcelain components, which are vulnerable to earthquake shakings due to the brittleness of porcelain material. Failure of porcelain equipment has been repeatedly observed in recent earthquakes. Hence, proper seismic modelling of porcelain equipment is important for various limit state checks in both product manufacturing stage and detailed substation design stage. Sheds on porcelain core and cemented joint between porcelain component and metal cap have significant effects on the dynamic properties of the equipment, however, such effects have not been adequately parameterized in existing design guidelines. This paper addresses this critical issue by developing a method for taking these two effects into account in seismic modelling based on numerical and analytical approaches. Equations for estimating the effects of sheds and cemented joint on flexural stiffness are derived, respectively, by regression analyses based on the results of 12 pieces of full-scale equipment in 500kV class or higher. The proposed modelling technique has further been validated by shaking table tests.