• Title/Summary/Keyword: seismic qualification

Search Result 78, Processing Time 0.021 seconds

Seismic Qualification of the Air Conditioning Equipment for Nuclear Power Plant (원자력 발전소용 공조기에 대한 내진검증)

  • 이준근;김진영;정필중;정정훈
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.535-543
    • /
    • 1999
  • The seismic qualification of the structures has been great concern in our engineering society with an effort to reduce the severe damages from an earthquake. However, on the contrary to the importance of the seismic qualification, the whole procedures are used to rely on the advanced countries who require various expenses for the qualification, which leads to the heavy loss of the foreign currency. In this study, the nuclear air conditioning system produced by LG Cable are adopted for the seismic qualification based on the guideline of NUREG, IEEE and ASME code. In order to confirm the validity of the present study, the results from the Ellis & Watts are compared with the present results and, also, the seismic qualification procedures and results mentioned herein are approved by KOPEC, which is a naitonal surveillance institute for the construction of nuclear power plant. From these results, the author confirmed the validity of the present seismic qualification procedures and results, which might be usefully applied to the other kind of seismic qualification of equipments.

  • PDF

Seismic Qualification Test on Motor Control Center for Use in Nuclear Power Plants (원자력발전소용 Motor Control Center의 내진검증시험)

  • 김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.217-224
    • /
    • 1997
  • The safety related equipments for use in nuclear power plants should be subjected to the seismic qualification in order to insure the safety of the nuclear power plant. This paper summarizes the seismic qualification test on the Low Voltage Motor Control Centers(MCC's) for use in Wolsong Nuclear Power Plants, Units 2, 3 and 4. The seismic qualification test was performed on the two prototype MCC's(a two-bay wide unit for Phase #1 Test and a five-bay wide unit for Phase #2 Test). The specimens were electrically powered and monitored during the test process. It was demonstrated that the specimens possessed sufficient structural and electrical integrity to withstand the required seismic conditions.

  • PDF

Seismic Qualification of Class 1E Battery by Combined Analysis and Testing (수치해석과 실험을 통한 안전등급 축전지의 내진검증)

  • 김영중;박성환;정태영;정정훈
    • Journal of KSNVE
    • /
    • v.3 no.1
    • /
    • pp.39-46
    • /
    • 1993
  • The seismic qualification for the class 1E battery of Korea Multipurpose Research Reactor was accomplished by the analysis as well as testing. The full rack consists of 4 similar sections of typical frame structure and contains 60 cells. However, since the seismic qualification was required on the frame structure and only on 3 aged ones among 60 dells, 2 sections of the full rack were assembled as a test rack with 28 cells including the 3 aged cells for an economic test. Seismic analysis for the full rack was carried out using the finite element program ANSYS. The modal parameters identified from the resonance search thest on the test rack were used to the seismic analysis of the full rack. It was confirmed that the test rack could represent the full rack with regards to seismic responses and function of cells, and that the full rack and aged cells were qualified to the given seismic test requirements.

  • PDF

A TEST VERIFIED MODEL DEVELOPMENT STUDY FOR A NUCLEAR WATER CHILLER USING THE SEISMIC QUALIFICATION ANALYSIS AND TEST

  • Sur, Uk-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.355-360
    • /
    • 2011
  • This paper is a study on a nuclear water chiller. It presents a test-verified finite element model of a water chiller to be used at a Nuclear Power Plant. The test-verified model predicts natural frequencies within 5% for all major modes below 50 Hz. This model accurately represents the dynamic characteristics of the actual hardware and is qualified for its use in the final stress analysis for seismic verification.

A study on technical standards and procedures related to qualification of nuclear safety grade equipment (원전 안전등급설비의 기기검증 관련 기술표준 및 절차)

  • Lee, Dong Yeon;Kim, Myeong Yun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In this paper, the regulations and technical standards related to qualification of safety grade equipment in nuclear power plants are critically reviewed with the qualification procedure in terms of structures, systems, and equipment in nuclear power plants. These facilities should be designed and constructed to protect from natural conditions or disasters and to perform their safety functions even in case of postulated accidents. Equipment Qualification is to demonstrate that the safety related equipment is designed and constructed to perform their safety functions under normal and accident conditions. It is classified into environmental qualification and seismic qualification.

Seismic Qualification Analysis for the Power Transformer with IEEE Std 693-1997 (IEEE Std 693-1997을 적용한 전력용 변압기 내진 해석)

  • Yang J.C.;Roh H.C.;Kim H.Y.;Park K.S.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.12
    • /
    • pp.527-531
    • /
    • 2005
  • Because of increasing demand for safety of the power transformer, the seismic qualification process in accordance with the standard of IEEE Std 693-1997 is essentially required by customer. Dynamic analysis method and static analysis method were used to qualify the seismic withstanding of the power transformer at high seismic level. Maximum stress was detected at the connection between the main structure and appendages, and maximum displacement was detected at the point of appendage's end tip. Load path and substructure system can be considered as important elements to prevent over stress and over displacement.

Seismic Analysis of Nuclear Power Pumps (원자력 발전소용 펌프의 내지진해석에 관한 연구)

  • Son, H. S.;Chun, H. S.;Chung, H. T.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.7-10
    • /
    • 1998
  • The pump safety related to the functions in nuclear power plants must be designed to meet load conditions considering seismic requirements. In order to satisfy both structural integrity and operability of these pumps, the initial step in the seismic qualification is to establish the resonant frequencies of the structure. Applications are made to the design of the vertical and horizontal type pump. Computational results are analyzed with respect to the dynamic characteristics and are compared to the expected design requirements.

  • PDF

Seismic qualification using the updated finite element model of structures

  • Sinha, Jyoti K.;Rao, A. Rama;Sinha, R.K.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.1
    • /
    • pp.97-106
    • /
    • 2005
  • The standard practice is to seismically qualify the safety related equipment and structural components used in the nuclear power plants. Among several qualification approaches the qualification by the analysis using finite element (FE) method is the most common approach used in practice. However the predictions by the FE model for a structure is known to show significant deviations from the dynamic behaviour of 'as installed' structure in many cases. Considering such limitation, few researchers have advocated re-qualification of such structures after installation at site to enhance the confidence in qualification vis-$\grave{a}$-vis plant safety. For such an exercise the validation of FE model with experimental modal data is important. A validated FE model can be obtained by the Model Updating methods in conjugation with the in-situ experimental modal data. Such a model can then be used for qualification. Seismic analysis using the updated FE model and its advantage has been presented through an example of an in-core component - a perforated horizontal tube of a nuclear reactor.

Seismic Qualification Analysis of a Vertical-Axis Wind Turbine (소형 수직축 풍력발전기의 내진검증 해석)

  • Choi, Young-Hyu;Hong, Min-Gi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.21-27
    • /
    • 2016
  • The static and dynamic structural integrity qualification was performed through the seismic analysis of a small-size Savonius-type vertical wind turbine at dead weight plus wind load and seismic loads. The ANSYS finite element program was used to develop the FEM model of the wind turbine and to accomplish static, modal, and dynamic frequency response analyses. The stress of the wind turbine structure for each wind load and dead weight was calculated and combined by taking the square root of the sum of the squares (SRSS) to obtain static stresses. Seismic response spectrum analysis was also carried out in the horizontal (X and Y) and vertical (Z) directions to determine the response stress distribution for the required response spectrum (RRS) at safe-shutdown earthquake with a 5% damping (SSE-5%) condition. The stress resulting from the seismic analysis in each of the three directions was combined with the SRSS to yield dynamic stresses. These static and dynamic stresses were summed by using the same SRSS. Finally, this total stress was compared with the allowable stress design, which was calculated based on the requirements of the KBC 2009, KS C IEC 61400-1, and KS C IEC 61400-2 codes.

Seismic Qualification Test for SSDM Hydraulic System of Research Reactor (연구용 원자로 이차정지구동장치 수력시스템의 내진검증)

  • Kim, Sanghaun;Kim, Gyeong-Ho;Sun, Jong-Oh;Cho, Yeong-Garp;Jung, Taeck-Hyung;Kim, Jung-Hyun;Lee, Kwan-Hee
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • The Second Shutdown Drive Mechanism (SSDM) provides an alternate and independent means of reactor shutdown. The Second Shutdown Rods (SSRs) of SSDMs are poised at the top of the core by the hydraulic force driven from a hydraulic system during normal operation. The rods drop by gravity when a trip is commended by a Reactor Protection System, Alternate Protection System, Automatic Seismic Trip System or operator by means of power off solenoid valves of hydraulic system. This paper describes the test results of seismic qualification of a prototype SSDM hydraulic system to demonstrate that its structural integrity and operability (functionality) are maintained during and after seismic excitations, that is, an adequacy of the SSDM design. From the results, this paper shows that the SSDM hydraulic system satisfies all its design requirements without any malfunctions during and after seismic excitations.