• 제목/요약/키워드: seismic pounding analysis

검색결과 51건 처리시간 0.028초

Seismic pounding effects on the adjacent symmetric buildings with eccentric alignment

  • Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Omar, Mohamed;Abdel Zaher, Ahmed K.
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.715-726
    • /
    • 2019
  • Several municipal seismic vulnerability investigations have been identified pounding of adjacent structures as one of the main hazards due to the constrained separation distance between adjacent buildings. Consequently, an assessment of the seismic pounding risk of buildings is superficial in future adjustment of design code provisions for buildings. The seismic lateral oscillation of adjacent buildings with eccentric alignment is partly restrained, and therefore a torsional response demand is induced in the building under earthquake excitation due to eccentric pounding. In this paper, the influence of the eccentric seismic pounding on the design demands for adjacent symmetric buildings with eccentric alignment is presented. A mathematical simulation is formulated to evaluate the eccentric pounding effects on the seismic design demands of adjacent buildings, where the seismic response analysis of adjacent buildings in series during collisions is investigated for various design parameters that include number of stories; in-plan alignment configurations, and then compared with that for no-pounding case. According to the herein outcomes, the effects of seismic pounding severity is mainly depending on characteristics of vibrations of the adjacent buildings and on the characteristics of input ground motions as well. The position of the building wherever exterior or interior alignment also, influences the seismic pounding severity as the effect of exposed direction from one or two sides. The response of acceleration and the shear force demands appear to be greater in case of adjacent buildings as seismic pounding at different levels of stories, than that in case of no-pounding buildings. The results confirm that torsional oscillations due to eccentric pounding play a significant role in the overall pounding-involved response of symmetric buildings under earthquake excitation due to horizontal eccentric alignment.

Pounding analysis of RC bridge considering spatial variability of ground motion

  • Han, Qiang;Dong, Huihui;Du, Xiuli;Zhou, Yulong
    • Earthquakes and Structures
    • /
    • 제9권5호
    • /
    • pp.1029-1044
    • /
    • 2015
  • To investigate the seismic pounding response of long-span bridges with high-piers under strong ground motions, shaking table tests were performed on a 1/10-scaled bridge model consisting of three continuous spans with rigid frames and one simply-supported span. The seismic pounding responses of this bridge model under different earthquake excitations including the uniform excitation and the traveling wave excitations were experimentally studied. The influence of dampers to the seismic pounding effects at the expansion joints was analyzed through nonlinear dynamic analyses in this research. The seismic pounding effects obtained from numerical analyses of the bridge model are in favorable agreement with the experimental results. Seismic pounding effect of bridge superstructures is dependent on the structural dynamic properties of the adjacent spans and characteristics of ground motions. Moreover, supplemental damping can effectively mitigate pounding effects of the bridge superstructures, and reduce the base shear forces of the bridge piers.

A reliability-based fragility assessment method for seismic pounding between nonlinear buildings

  • Liu, Pei;Zhu, Hai-Xin;Fan, Peng-Peng;Yang, Wei-Guo
    • Structural Engineering and Mechanics
    • /
    • 제77권1호
    • /
    • pp.19-35
    • /
    • 2021
  • Existing methods to estimate the probability of seismic pounding occurrence of adjacent buildings do not account for nonlinear behavior or only apply to simple lumped mass systems. The present study proposes an efficient method based on subset simulation for fragility and risk assessment of seismic pounding occurrence between nonlinear adjacent buildings neglecting pounding effects with application to finite element models. The proposed method is first applied to adjacent buildings modeled as elastoplastic systems with substantially different dynamic properties for different structural parameters. Seismic pounding fragility and risk of adjacent frame structures with different floor levels is then assessed, paying special attention to modeling the non-linear material behavior in finite element models. Difference in natural periods and impact location are identified to affect the pounding fragility simultaneously. The reliability levels of the minimum code-specified separation distances are also determined. In addition, the incremental dynamic analysis method is extended to assess seismic pounding fragility of the adjacent frame structures, resulting in higher fragility estimates for separation distances larger than the minimum code-specified ones in comparison with the proposed method.

Seismic pounding effects on adjacent buildings in series with different alignment configurations

  • Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Abdel Shafy, Aly G.A.;Abbas, Yousef A.;Omar, Mohamed;Abdel Latif, Mohamed M.S.;Mahmoud, Sayed
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.289-308
    • /
    • 2018
  • Numerous urban seismic vulnerability studies have recognized pounding as one of the main risks due to the restricted separation distance between neighboring structures. The pounding effects on the adjacent buildings could extend from slight non-structural to serious structural damage that could even head to a total collapse of buildings. Therefore, an assessment of the seismic pounding hazard to the adjacent buildings is superficial in future building code calibrations. Thus, this study targets are to draw useful recommendations and set up guidelines for potential pounding damage evaluation for code calibration through a numerical simulation approach for the evaluation of the pounding risks on adjacent buildings. A numerical simulation is formulated to estimate the seismic pounding effects on the seismic response demands of adjacent buildings for different design parameters that include: number of stories, separation distances; alignment configurations, and then compared with nominal model without pounding. Based on the obtained results, it has been concluded that the severity of the pounding effects depends on the dynamic characteristics of the adjacent buildings and the input excitation characteristics, and whether the building is exposed to one or two-sided impacts. Seismic pounding among adjacent buildings produces greater acceleration and shear force response demands at different story levels compared to the no pounding case response demands.

Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings

  • Skrekas, Paschalis;Sextos, Anastasios;Giaralis, Agathoklis
    • Earthquakes and Structures
    • /
    • 제6권1호
    • /
    • pp.71-87
    • /
    • 2014
  • Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. Seismic pounding is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsion-induced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system.

지반강성 및 고유진동수비에 따른 교량의 지진충돌해석 (Seismic Pounding Analysis of Bridge According to Soil Stiffness and Natural Frequency Ratio)

  • 강승우;최광규;배병호;고재상
    • 한국지진공학회논문집
    • /
    • 제18권4호
    • /
    • pp.193-200
    • /
    • 2014
  • This paper examines the pounding problem between adjacent decks subjected to strong earthquakes. The elastomeric bearings in an isolated bridge reduce the stresses on the superstructure and cushion the impact by transferring smaller seismic forces to the substructure. On the other hand, these bearings also allow large horizontal displacement of the superstructure due to seismic forces. Bridges having various supporting soil conditions and different frequency ratios between adjacent decks are investigated by numerical analysis. In the analysis, decision making is conducted whether the collision took place or not and, the magnitude of pounding force and the duration time of collision are obtained and the results are discussed.

충돌을 고려한 지진하중을 받는 교량의 거동특성분석 (Dynamic Behaviors of the Simply Supported Bridge System under Seismic Excitations Considering Pounding Effects)

  • 김상효
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.231-238
    • /
    • 1999
  • The longitudinal dynamic behaviors of the bridge system consisting of multiple simply supported spans under seismic excitations are examined considering pounding effects. The pounding phenomena between adjacent girders which may consequently result in the span collapses are modeled by using the multi-degree-of-freedom system, The inelastic behavior of the RC pier is also considered by adopting the hysteresis loop model and the p-$\delta$ effect. Motions of the foundation and abutment are also considered but the local damage resulting from the girder pounding assumed to be neligible. The developed model is found to give the appropriate information of the dynamic characteristics of the bridge behavior. It is observed that the pounding effect becomes significant as the peak acceleration of the seismic excitation increases. Under minor earthquakes the pounding tends to increase the relative displacements while under strong earthquakes it tends to decrease the relative displacements by restricting the longitudinal girder motions, therefore it is suggested that the pounding effects should be considered in the analysis of the relative displacements of the longitudinally adjacent girder motions.

  • PDF

Probabilistic analysis of structural pounding considering soil-structure interaction

  • Naeej, Mojtaba;Amiri, Javad Vaseghi
    • Earthquakes and Structures
    • /
    • 제22권3호
    • /
    • pp.289-304
    • /
    • 2022
  • During strong ground motions, adjacent structures with insufficient separation distances collide with each other causing considerable architectural and structural damage or collapse of the whole structure. Generally, existing design procedures for determining the separation distance between adjacent buildings subjected to structural pounding are based on approximations of the buildings' peak relative displacement. These procedures are based on unknown safety levels. This paper attempts to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. Actually, the aim of this study is to evaluate the influence of foundation flexibility on probabilistic evaluation of structural pounding. A Hertz-damp pounding force model has been considered in order to effectively capture impact forces during collisions. In total, 5.25 million time-history analyses were performed over the adopted models using an ensemble of 25 ground motions as seismic input within OpenSees software. The results of the study indicate that the soil-structure interaction significantly influences the pounding-involved responses of adjacent structures during earthquakes and generally increases the pounding probability.

신축이음부에서 충돌을 고려한 콘크리트 교량의 동적해석 (Dynamics Analysis of Concrete Bridges at Expansion Joints Considering Pounding)

  • 최석정;유문식;전찬기;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.176-187
    • /
    • 2001
  • Most bridges have expansion joints to accommodate thermal expansion and contraction without inducing large forces in the bridges. To evaluate the effects of earthquake-induced at expansion joints of concrete bridges, the first part of this paper deals with a collinear impact between concrete segments, which have the same cross section but different lengths. Especially, impact force, momentum, strain energy and kinetic energy are formulated in mathematically. These results are then used in the second part of this paper to simulate a realistic yet simple analysis of seismic pounding in concrete bridges. Analysis of seismic pounding in idealized concrete bridges is carried out by using a simple lumped-mass model and rationally determined values of the coefficient of restitution and the duration of impact.

  • PDF

상판과 교대의 충돌을 고려한 사교의 비선형 지진거동 해석 (Nonlinear Seismic Behavior Analysis of Skewed Bridges Considering Pounding Between Deck and Abutment)

  • 강승우;최광규;송시영;손민규
    • 한국지진공학회논문집
    • /
    • 제20권5호
    • /
    • pp.301-310
    • /
    • 2016
  • There are differences in seismic behavior between non-skewed bridges and skewed bridges due to in-plane rotations caused by pounding between the skewed deck and its abutments during strong earthquake. Many advances have been made in developing design codes and guidelines for dynamic analyses of non-skewed bridges. However, there remain significant uncertainties with regard to the structural response of skewed bridges caused by unusual seismic response characteristics. The purpose of this study is performing non-linear time history analysis of the bridges using abutment-soil interaction model considering pounding between the skewed deck and its abutments, and analyzing global seismic behavior characteristics of the skewed bridges to assess the possibility of unseating. Refined bridge model with abutment back fill, shear key and elastomeric bearing was developed using non-linear spring element. In order to evaluate the amplification of longitudinal and transverse displacement response, non-linear time history analysis was performed for single span bridges. Far-fault and near-fault ground motions were used as input ground motions. According to each parameter, seismic behavior of skewed bridges was evaluated.