• Title/Summary/Keyword: seismic performance factor

Search Result 208, Processing Time 0.022 seconds

Performance evaluation of suspended ceiling systems using shake table test

  • Ozcelik, Ozgur;Misir, Ibrahim S.;Saridogan, Serhan
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.121-142
    • /
    • 2016
  • The national standard being used in Turkey for suspended ceiling systems (SCS) regulates material and dimensional properties but does not contain regulations regarding installation instructions which cause substandard applications of SCSs in practice. The lack of installation instructions would potentially affect the dynamic performance of these systems. Also, the vast majority of these systems are manufactured using substandard low-quality materials, and this will inevitably increase SCS related damages during earthquakes. The experimental work presented here focuses on the issue of dynamic performance of SCSs with different types of carrier systems (lay-on and clip-in systems), different weight conditions, and material-workmanship qualities. Moreover, the effects of auxiliary fastening elements, so called seismic perimeter clips, in improving the dynamic performance of SCSs were experimentally investigated. Results show that clip-in ceiling system performs better than lay-on system regardless of material and workmanship qualities. On the other hand, the quality aspect becomes the most important parameter in affecting the dynamic performance of lay-on type systems as opposed to tile weights and usage of perimeter clips. When high quality system is used, tile weight does not change the performance of lay-on system, however in poor quality system, tile weight becomes an important factor where heavier tiles considerably decrease the performance level. Perimeter clips marginally increase the dynamic performance of lay-on ceiling system, but it has no effect on the clip-in ceiling system under the shaking levels considered.

Seismic behavior of steel and sisal fiber reinforced beam-column joint under cyclic loading

  • S.M. Kavitha;G. Venkatesan;Siva Avudaiappan;Chunwei Zhang
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.481-492
    • /
    • 2023
  • The past earthquakes revealed the importance of the design of moment-resisting reinforced concrete framed structures with ductile behavior. Due to seismic activity, failures in framed structures are widespread in beam-column joints. Hence, the joints must be designed to possess sufficient strength and stiffness. This paper investigates the effects of fibers on the ductility of hybrid fiber reinforced self-compacting concrete (HFRSCC) when subjected to seismic actions; overcoming bottlenecks at the beam-column joints has been studied by adding low modulus sisal fiber and high modulus steel fiber. For this, the optimized dose of hooked end steel fiber content (1.5%) was kept constant, and the sisal fiber content was varied at the rate of 0.1%, up to 0.3%. The seismic performance parameters, such as load-displacement behavior, ductility, energy absorption capacity, stiffness degradation, and energy dissipation capacity, were studied. The ductility factor and the cumulative energy dissipation capacity of the hybrid fiber (steel fiber, 1.5% and sisal fiber, 0.2%) added beam-column joint specimen is 100% and 121% greater than the control specimen, respectively. And also the stiffness of the hybrid fiber reinforced specimen is 100% higher than the control specimen. Thus, the test results showed that adding hybrid fibers instead of mono fibers could significantly enhance the seismic performance parameters. Therefore, the hybrid fiber reinforced concrete with 1.5% steel and 0.2% sisal fiber can be effectively used to design structures in seismic-prone areas.

Similitude Law An Equivalent Three Phase Similitude Law for Pseudodynamic Test on Small-scale Reinforced Concrete Structures (철근콘크리트 구조물의 유사동적실험을 위한 Equivalent Three Phase Similitude LaW)

  • ;;;Guo, Xun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.303-310
    • /
    • 2003
  • Small-scale models have been frequently used for experimental evaluation of seismic performance because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to size of aggregate. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor and equivalent modulus ratio. In this study, compressive strength tests are conducted to analyze equivalent modulus ratio of micro-concrete to normal-concrete. Equivalent modulus ratios are divided into elastic, weak nonlinear and strong nonlinear phases, which are based on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test, considering equivalent three phase similitude law based on seismic damage levels, is developed. In addition, prior to tile experiment, it is verified numerically if tile algorithm is applicable to the pseudodynamic test.

  • PDF

Effect of sequential earthquakes on evaluation of non-linear response of 3D RC MRFs

  • Oggu, Praveen;Gopikrishna, K.
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.279-293
    • /
    • 2021
  • Most of the existing seismic codes for RC buildings consider only a scenario earthquake for analysis, often characterized by the response spectrum at the specified location. However, any real earthquake event often involves occurrences of multiple earthquakes within a few hours or days, possessing similar or even higher energy than the first earthquake. This critically impairs the rehabilitation measures thereby resulting in the accumulation of structural damages for subsequent earthquakes after the first earthquake. Also, the existing seismic provisions account for the non-linear response of an RC building frame implicitly by specifying a constant response modification factor (R) in a linear elastic design. However, the 'R' specified does not address the changes in structural configurations of RC moment-resisting frames (RC MRFs) viz., building height, number of bays present, bay width, irregularities arising out of mass and stiffness changes, etc. resulting in changed dynamic characteristics of the structural system. Hence, there is an imperative need to assess the seismic performance under sequential earthquake ground motions, considering the adequacy of code-specified 'R' in the representation of dynamic characteristics of RC buildings. Therefore, the present research is focused on the evaluation of the non-linear response of medium-rise 3D RC MRFs with and without vertical irregularities under bi-directional sequential earthquake ground motions using non-linear dynamic analysis. It is evident from the results that collapse probability increases, and 'R' reduces significantly for various RC MRFs subjected to sequential earthquakes, pronouncing the vulnerability and inadequacy of estimation of design base shear by code-specified 'R' under sequential earthquakes.

Centrifuge shaking table tests on a friction pendulum bearing isolated structure with a pile foundation in soft soil

  • Shu-Sheng, Qu;Yu, Chen;Yang, Lv
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.517-526
    • /
    • 2022
  • Previous studies have shown that pile-soil interactions have significant influences on the isolation efficiency of an isolated structure. However, most of the existing tests were carried out using a 1-g shaking table, which cannot reproduce the soil stresses resulting in distortion of the simulated pile-soil interactions. In this study, a centrifuge shaking table modelling of the seismic responses of a friction pendulum bearing isolated structure with a pile foundation under earthquakes were conducted. The pile foundation structure was designed and constructed with a scale factor of 1:100. Two layers of the foundation soil, i.e., the bottom layer was made of plaster and the upper layer was normal soil, were carefully prepared to meet the similitude requirement. Seismic responses, including strains, displacement, acceleration, and soil pressure were collected. The settlement of the soil, sliding of the isolator, dynamic amplification factor and bending moment of the piles were analysed to reveal the influence of the soil structure interaction on the seismic performance of the structure. It is found that the soil rotates significantly under earthquake motions and the peak rotation is about 0.021 degree under 24.0 g motions. The isolator cannot return to the initial position after the tests because of the unrecoverable deformation of the soil and the friction between the curved surface of the slider and the concave plate.

Evaluation of Response Modification Factors for Steel Moment Frame Buildings Subjected to Seismic Loads (지진 하중을 받는 철골 모멘트 골조 빌딩에 대한 반응수정계수의 평가)

  • Lee, Kihak;Woo, Sungwoo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.585-596
    • /
    • 2006
  • This study focuses on the seismic behavior of 3-, 9-, and 20-story steel moment resisting frame (MRF) structures designed in accordance with the 2000 International Building Code using different Response Modification factors (R factors), i.e., 8, 9, 10, 11, and 12. For a detailed case study, 30 different structures were evaluated for 20 ground motions representing the hazard level, which is equal to a 2% probability in 50 years (2% in 50 years). The results showed that the current R factors provide conservative designs for the 3- and 9-story buildings for the Collapse Prevention performance objective. the 20-story buildings, which were designed without using the minimum requirement of spectral acceleration CS prescribed in IBC 2000, did not satisfy the seismic performance for Collapse Prevention performance.

Seismic Performance of Octagonal Flared RC Columns using Oblong Hoops (장방형 띠철근을 이용한 팔각형 플레어 RC 기둥의 내진성능)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.1-9
    • /
    • 2015
  • Transverse steel bars are used in the plastic hinge zone of columns to insure adequate confinement, prevention of longitudinal bar buckling and ductile behavior. Fabrication and placement of rectangular hoops and cross-ties in columns are difficult to construct. Details of reinforcement for rectangular section require a lot of rectangular hoops and cross-ties. In this paper, to solve these problems, the new lateral confinement method using oblong hoop is proposed for the transverse confinement of the flared column. It can be the alternative for oblong cross-section and flared column with improved workability and cost-efficiency. The final objectives of this study are to suggest appropriate oblong hoop details and to provide quantitative reference data and tendency for seismic performance or damage assessment based on the drift levels such as residual deformation, elastic strain energy. This paper describes factors of seismic performance such as ultimate displacement/drift ratio, displacement ductility, response modification factor, equivalent viscous damping ratio and effective stiffness.

A Study on the Ductility of Concrete-Filled Composite Columns under Cyclic Loading (반복하중을 받는 콘크리트충전 강합성 기둥의 연성에 관한 연구)

  • 송준엽;권영봉;김성곤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.11-19
    • /
    • 2001
  • A series of test on concrete-filled composite columns was preformed to evaluate structural performance under axial compression and cyclic lateral loading. It was presented that concrete-filled composite columns had high strength, high stiffness and large energy-absorption capacity on account of mutual confinement between the steel plate and filled-in concrete. A cross section analysis procedure developed to predict the moment-curvature relation of composite columns was proven to be on accurate and effective method. The ductility factor and the response modification factor were evaluated for the seismic design of concrete-filled composite columns. It was shown that concrete-filled composite columns could be used as a very efficient earthquake-resistant structural member.

  • PDF

Energy dissipation demand of compression members in concentrically braced frames

  • Lee, Kangmin;Bruneau, Michel
    • Steel and Composite Structures
    • /
    • v.5 no.5
    • /
    • pp.345-358
    • /
    • 2005
  • The response of single story buildings and other case studies are investigated to observe trends in response and to develop a better understanding of the impact of some design parameters on the seismic response of CBF. While it is recognized that many parameters have an influence on the behavior of braced frames, the focus of this study is mostly on quantifying energy dissipation in compression and its effectiveness on seismic performance. Based on dynamic analyses of single story braced frame and case studies, it is found that a bracing member designed with bigger R and larger KL/r results in lower normalized cumulative energy, i.e., cumulative compressive energy normalized by the corresponding tensile energy (${\sum}E_C/E_T$), in both cases.

Evaluation of Seismic Response Considering the Ageing Effect of Rubber and Lead-Rubber Bearings Applied to PSC Box Bridge (PSC-Box 교량에 적용된 탄성고무 받침과 납-고무 받침의 노후화 효과를 고려한 지진응답의 평가)

  • Jeong, Yeon Hui;Song, Jong-Keol;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.6
    • /
    • pp.311-319
    • /
    • 2019
  • The number of aged bridges is increasing so that bridges over 30 years old account for about 11% of all bridges. Consequently, the development of a seismic performance evaluation method that considers the effects of ageing is essential for a seismic retrofitting process for improvement of the seismic safety of existing old bridges. Assessment of the damage situation of bridges after the recent earthquakes in Korea has been limited to the bearings, anchor, and concrete mortar on piers. The purpose of this study is to evaluate the seismic responses of PSC box girder bridges by considering the ageing effect of rubber bearings (RBs) and lead-rubber bearings (LRBs). The modification factor proposed by AASHTO is used to take into account the ageing effect in the bearings. PSC box girder bridges with RBs and LRBs were 3D modeled and analyzed with the OpenSEES program. In order to evaluate the ageing effect of RBs and LRBs, 40 near fault and 40 far field records were used as the input earthquakes. When considering the effect of ageing, the displacement responses and shear forces of bridge bearings (RBs and LRBs) were found to increase mostly under the analytical conditions. It was shown that the effect of ageing is greater in the case of RBs than in the case of LRBs.