• Title/Summary/Keyword: seismic performance and design

Search Result 1,416, Processing Time 0.028 seconds

Performance-based Wind-resistant Design for High-rise Structures in Japan

  • Nakai, Masayoshi;Hirakawa, Kiyoaki;Yamanaka, Masayuki;Okuda, Hirofumi;Konishi, Atsuo
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.271-283
    • /
    • 2013
  • This paper introduces the current status of high-rise building design in Japan, with reference to some recent projects. Firstly, the design approval system and procedures for high-rise buildings and structures in Japan are introduced. Then, performance-based wind-resistant design of a 300 m-high building, Abeno Harukas, is introduced, where building configuration, superstructure systems and various damping devices are sophisticatedly integrated to ensure a higher level of safety and comfort against wind actions. Next, design of a 213 m-high building is introduced with special attention to habitability against the wind-induced horizontal motion. Finally, performance-based wind-resistant design of a 634 m-high tower, Tokyo Sky Tree, is introduced. For this structure, the core column system was adopted to satisfy the strict design requirements due to the severest level of seismic excitations and wind actions.

Behaviour factor and displacement estimation of low-ductility precast wall system under seismic actions

  • Tiong, Patrick L.Y.;Adnan, Azlan;Hamid, Nor H.A.
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.625-655
    • /
    • 2013
  • This paper investigated the seismic behaviour of an innovated non-ductile precast concrete wall structural system; namely HC Precast System (HCPS). The system comprises load-bearing precast wall panels merely connected only to column at both ends. Such study is needed because there is limited research information available in design codes for such structure particularly in regions having low to moderate seismicity threats. Experimentally calibrated numerical model of the wall system was used to carry out nonlinear pushover analyses with various types of lateral loading patterns. Effects of laterally applied single point load (SPL), uniformly distributed load (UDL), modal distributed load (MDL) and triangular distributed load (TDL) onto global behaviour of HCPS were identified. Discussion was focused on structural performance such as ductility, deformability, and effective stiffness of the wall system. Thus, a new method for engineers to estimate the nonlinear deformation of HCPS through linear analysis was proposed.

Seismic performance of a rocking bridge pier substructure with frictional hinge dampers

  • Cheng, Chin-Tung;Chen, Fu-Lin
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.501-516
    • /
    • 2014
  • The rocking pier system (RPS) allows the columns to rock on beam or foundation surfaces during the attacks of a strong earthquake. Literatures have proved that seismic energy dissipated by the RPS through the column impact is limited. To enhance the energy dissipation capacity of a RPS bridge substructure, frictional hinge dampers (FHDs) were installed and evaluated by shaking table tests. The supplemental FHDs consist of two brass plates sandwiched by three steel plates. The strategy of self-centering design is to isolate the seismic energy by RPS at the columns and then dissipate the energy by FHDs at the bridge deck. Component tests of FHD were first conducted to verify the friction coefficient and dynamic characteristic of the FHDs. In total, 32 shaking table tests were conducted to investigate parameters such as wave forms of the earthquake (El Centro 1940 and Kobe 1995) and normal forces applied on the friction dampers. An analytical model was also proposed to compare with the tested damping of the bridge sub-structure with or without FHDs.

Network Configuration, Time Management, and Data Storage for Urban Earthquake Disaster Preventing System (도시형 지진방재시스템을 위한 네트워크 구성, 시간관리 및 데이터 저장 방법)

  • Choi, Hun;Youn, Joosang;Heo, Gyeongyong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1675-1682
    • /
    • 2014
  • In this paper, we propose a precise time management and time synchronization based on real-time data storage and transmission scheme in design of seismic data acquisition system for urban earthquake disaster preventing system (UEDPS). It is possible to improve the performance of the existing research results through the proposed methods. To evaluate the performances of the proposed methods, we implemented a prototype system(H/W & S/W) and performed some experiments with real seismic data and test equipment generated data as the input.

Seismic Retrofit of the Public Facilities Using the Wrapping Composite Plate (래핑 복합플레이트를 이용한 공공시설의 내진보강)

  • Park, Choon-Wook
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.45-55
    • /
    • 2023
  • The purpose of this study has a purpose to evaluate shear ability, ductility and energy dissertation of specimens that is to be applied to jacket using wrapping method. The experiments was conducted as a condition that simultaneously applied axial load and transverse force. The results of experiments represent story-displacement ratio, the stiffness, energy dissertation, plastic rotation which mean seismic resistance ablity on structure. And It represents the form of crack ditribution and failure in extreme stages. Based on the results of this experiment, Design examples are given to show the performance evaluation for the column reinforcing of old school buildings using nonlinear analysis is going to be conducted. Therefore, it is possible to apply the seismic retrofit method to public facilities.

Seismic behavior and strength of L-shaped steel reinforced concrete column-concrete beam planar and spatial joints

  • Chen, Zongping;Xu, Deyi;Xu, Jinjun;Wang, Ni
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.337-352
    • /
    • 2021
  • The study presented experimental and numerical investigation on the seismic performance of steel reinforced concrete (SRC) L-shaped column- reinforced concrete (RC) beam joints. Various parameters described as steel configuration form, axial compressive ratio, loading angle, and the existence of slab were examined through 4 planar joints and 7 spatial joints. The characteristics of the load-displacement response included the bearing capacity, ductility, story drift ratio, energy-dissipating capacity, and stiffness degradation were analyzed. The results showed that shear failure and flexural failure in the beam tip were observed for planar joints and spatial joint, respectively. And RC joint with slab failed with the plastic hinge in the slab and bottom of the beam. The results indicated that hysteretic curves of spatial joints with solid-web steel were plumper than those with hollow-web specimens. The capacity of planar joints was higher than that of space joints, while the opposite was true for energy-dissipation capacity and ductility. The high compression ratio contributed to the increase in capacity and initial stiffness of the joint. The elastic and elastic-plastic story deformation capacity of L-shaped column frame joints satisfied the code requirement. A design formula of joint shear resistance based on the superposition theory and equilibrium plasticity truss model was proposed for engineering application.

Reward Design of Reinforcement Learning for Development of Smart Control Algorithm (스마트 제어알고리즘 개발을 위한 강화학습 리워드 설계)

  • Kim, Hyun-Su;Yoon, Ki-Yong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.39-46
    • /
    • 2022
  • Recently, machine learning is widely used to solve optimization problems in various engineering fields. In this study, machine learning is applied to development of a control algorithm for a smart control device for reduction of seismic responses. For this purpose, Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm. A single degree of freedom (SDOF) structure with a smart tuned mass damper (TMD) was used as an example structure. A smart TMD system was composed of MR (magnetorheological) damper instead of passive damper. Reward design of reinforcement learning mainly affects the control performance of the smart TMD. Various hyper-parameters were investigated to optimize the control performance of DQN-based control algorithm. Usually, decrease of the time step for numerical simulation is desirable to increase the accuracy of simulation results. However, the numerical simulation results presented that decrease of the time step for reward calculation might decrease the control performance of DQN-based control algorithm. Therefore, a proper time step for reward calculation should be selected in a DQN training process.

Seismic Performance of Circular RC Bridge Columns with Longitudinal Steel Connection Details (축방향철근 연결상세에 따른 철근콘크리트 원형교각의 내진성능)

  • Lee Jae-Hoon;Son Hyeok-Soo;Ko Seong-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.249-260
    • /
    • 2004
  • The longitudinal steel connection of reinforced concrete bridge column is sometimes practically unavoidable, however the current Korean bridge design specifications have no special provisions about lap-splices of longitudinal steel. This paper reports experimental results of a research program investigating the seismic performance of circular RC bridge columns with respect to longitudinal steel connection detailing. Twenty-one circular column specimens were tested under quasi-static test. The columns with the entire longitudinal steel lap-spliced within plastic hinge region show relatively sudden strength degradation and low ductility than the columns with continuous longitudinal steel and the columns with half of longitudinal steel lap-spliced. However, the seismic performance of the column with mechanically connected longitudinal steel is similar to that of the column with continuous longitudinal steel. The final objectives of this study are to suggest appropriate longitudinal reinforcement connection details for the limited ductility design concept and to provide quantitative reference data and tendency for performance or damage assessment based on the performance levels such as cracking, yielding, collapse, etc. Ultimate displacement/drift ratio, displacement ductility, response modification factor, equivalent viscous damping ratio, residual deformation index, and effective stiffness are investigated and discussed in this paper.

Seismic Performance of Shear Dominant Hybrid Steel Link Beam with Circular Web Opening (원형 개구부가 있는 전단지배 하이브리드 강재 연결보의 내진성능)

  • Lim, Woo-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.37-48
    • /
    • 2018
  • Cyclic loading tests for shear dominant hybrid steel link beams with circular web openings were performed to evaluate the seismic performance. Four half-scaled specimens with bolted connections were tested. The test parameter is a diameter of the web opening, i.e., shear strength ratio ($V_{pw}/V_p$) of the link beam and presence of top-seat angles. Using test results, adequate design shear strength of link beam was finally suggested. Test results showed that when the shear capacity is less than half of the plastic shear strength, seismic performance was improved due to mitigation of pinching under reversed cyclic inelastic deformations.

A Study on the Plastic deformation Absorption Characteristics of Aluminum-Polyethylene Composite Structure Sprinkler Pipe (알루미늄 합성수지 복합 구조 스프링클러 파이프의 변위 흡수 특성 연구)

  • Kim, Jun-Gon;Kim, Kwang-Beom;Noh, Sung-Yeo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.426-433
    • /
    • 2019
  • After an earthquake, fire and gas explosions are more likely to cause more casualties in cities with many apartment buildings and large complex buildings. In order to prevent this, seismic design is necessary for the fire protection sprinkler system. However, most systems currently use stainless-steel pipes, although synthetic resin pipes are used in some special places. These materials are susceptible to vibration and earthquakes. This study evaluated the displacement absorption flexibility of polyethylene (PE) and aluminum (Al) multi-layered composite pipes to increase the seismic performance in a vibration environment and during earthquakes. The seismic performance was compared with that of a stainless-steel and PE pipes. The seismic characteristics can be measured by measuring the amount and extent of vibration transmitted by the sprinkler pipe. This method can be used to judge the seismic characteristics to attenuate the vibration during an earthquake. The seismic characteristics of the pipe were verified by comparing the logarithmic attenuation rate to the initial response displacement of the vibration generated by the transverse vibration measurement method.