• Title/Summary/Keyword: seismic performance and design

Search Result 1,416, Processing Time 0.024 seconds

An Efficient Intruder Detection using the Seismic Sensor (진동센서를 이용한 효율적인 침입자 탐지 기법)

  • Kim, Yong-Hyun;Chung, Kwang-Sue
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1129-1137
    • /
    • 2011
  • This paper reports on a design of the footstep signal detection system using the seismic sensor. First, we analyzed the characteristics of seismic signal, seismic sensor, and the UGS(Unattended Ground Sensor) system with seismic sensors. In addition, we summarized the existing algorithms to detect footstep using the seismic sensors, and developed our low-power and high efficient footstep detection algorithm. In this paper, the sensor node operations are classified into three different steps and different resources and algorithms are applied to each step, not only to minimize the power consumption, but also to improve the performance.

Seismic Performance Evaluation of Freeform Diagrid System (비정형 Diagrid System의 내진성능 평가)

  • Ko, Chang-Kyun;Ju, Young-Kyu;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.189-198
    • /
    • 2011
  • Many new structural systems have been developed to build free-form structures, which is the new architectural trend for aesthetic beauty. The diagrid system resists both gravity and later loads, with its perimeter-diagonal columns. In the current seismic-design provisions, however, a seismic-performance factor for a new structural system has not yet been provided. ATC-63 provides a new methodology for defining various seismic-performance factors, including the response modification factor. In this paper, nonlinear static and dynamic analyses were conducted for the 3D diagrid frame, with each load applied at $0-180^{\circ}$ degrees. Through these analyses, the seismic performance of the diagrid system was evaluated.

Influence of multi-component ground motions on seismic responses of long-span transmission tower-line system: An experimental study

  • Tian, Li;Ma, Ruisheng;Qiu, Canxing;Xin, Aiqiang;Pan, Haiyang;Guo, Wei
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.583-593
    • /
    • 2018
  • Seismic performance is particularly important for life-line structures, especially for long-span transmission tower line system subjected to multi-component ground motions. However, the influence of multi-component seismic loads and the coupling effect between supporting towers and transmission lines are not taken into consideration in the current seismic design specifications. In this research, shake table tests are conducted to investigate the performance of long-span transmission tower-line system under multi-component seismic excitations. For reproducing the genuine structural responses, the reduced-scale experimental model of the prototype is designed and constructed based on the Buckingham's theorem. And three commonly used seismic records are selected as the input ground motions according to the site soil condition of supporting towers. In order to compare the experimental results, the dynamic responses of transmission tower-line system subjected to single-component and two-component ground motions are also studied using shake table tests. Furthermore, an empirical model is proposed to evaluate the acceleration and member stress responses of transmission tower-line system subjected to multi-component ground motions. The results demonstrate that the ground motions with multi-components can amplify the dynamic response of transmission tower-line system, and transmission lines have a significant influence on the structural response and should not be neglected in seismic analysis. The experimental results can provide a reference for the seismic design and analysis of long-span transmission tower-line system subjected to multi-component ground motions.

The Structural Design of Tianjin Goldin Finance 117 Tower

  • Liu, Peng;Ho, Goman;Lee, Alexis;Yin, Chao;Lee, Kevin;Liu, Guang-lei;Huang, Xiao-yun
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.271-281
    • /
    • 2012
  • Tianjin Goldin Finance 117 tower has an architectural height of 597 m, total of 117 stories, and the coronation of having the highest structural roof of all the buildings under construction in China. Structural height-width ratio is approximately 9.5, exceeding the existing regulation code significantly. In order to satisfy earthquake and wind-resisting requirements, a structure consisting of a perimeter frame composed of mega composite columns, mega braces and transfer trusses and reinforced concrete core containing composite steel plate wall is adopted. Complemented by some of the new requirements from the latest Chinese building seismic design codes, design of the super high-rise building in high-intensity seismic area exhibits a number of new features and solutions to professional requirements in response spectrum selection, overall stiffness control, material and component type selection, seismic performance based design, mega-column design, anti-collapse and stability analysis as well as elastic-plastic time-history analysis. Furthermore, under the prerequisite of economic viability and a series of technical requirements prescribed by the expert review panel for high-rise buildings exceeding code limits, the design manages to overcome various structural challenges and realizes the intentions of the architect and the client.

Seismic performance assessments of precast energy dissipation shear wall structures under earthquake sequence excitations

  • Zhang, Hao;Li, Chao;Wang, Zhi-Fang;Zhang, Cai-Yan
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.147-162
    • /
    • 2020
  • This paper presents a novel precast energy dissipation shear wall (PEDSW) structure system that using mild steel dampers as dry connectors at the vertical joints to connect adjacent wall panels. Analytical studies are systematically conducted to investigate the seismic performance of the proposed PEDSW under sequence-type ground motions. During earthquake events, earthquake sequences have the potential to cause severe damage to structures and threaten life safety. To date, the damage probability of engineering structures under earthquake sequence has not been included in structural design codes. In this study, numerical simulations on single-story PEDSW are carried out to validate the feasibility and reliability of using mild steel dampers to connect the precast shear walls. The seismic responses of the PEDSW and cast-in-place shear wall (CIPSW) are comparatively studied based on nonlinear time-history analyses, and the effectiveness of the proposed high-rise PEDSW is demonstrated. Next, the foreshock-mainshock-aftershock type earthquake sequences are constructed, and the seismic response and fragility curves of the PEDSW under single mainshock and earthquake sequences are analyzed and compared. Finally, the fragility analysis of PEDSW structure under earthquake sequences is performed. The influences of scaling factor of the aftershocks (foreshocks) to the mainshocks on the fragility of the PEDSW structure under different damage states are investigated. The numerical results reveal that neglecting the effect of earthquake sequence can lead to underestimated seismic responses and fragilities, which may result in unsafe design schemes of PEDSW structures.

Proposing a multi-mushroom structural system for enhanced seismic performance in large-plan low-rise reinforced concrete buildings

  • Mahmoud Alhashash;Ahed Habib;Mahmood Hosseini
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.487-502
    • /
    • 2024
  • This study introduces a novel 'multi-mushroom' structural system designed to improve seismic performance in lowrise buildings. Traditional low-rise structures tend to favor sliding over rocking due to their smaller aspect ratios despite the rocking system's superior seismic response reduction. Rocking designs allow structures to pivot at their base during seismic events, reducing damage by dissipating energy. The proposed multi-mushroom system divides the building into four equal sections with small gaps in between, each capable of independent rocking. Numerical analyses are conducted using scaled earthquake records from far- and near-source events to evaluate this system's performance. The results indicated that the multimushroom system significantly reduces plastic hinge formation compared to conventional designs. The system also demonstrated enhanced beam performance and a robust base girder, contributing to reduced collapse vulnerability. The 3-story model exhibited the most favorable behavior, effectively mitigating peak roof drift values, where the rocking system achieved a 21% reduction in mean roof displacement for near-field records and 15% for far-field records. However, the 5-story configuration showed increased roof displacement, and the 7-story model recorded higher incidences of collapse prevention (CP) hinges, indicating areas for further optimization. Overall, the multi-mushroom system enhances seismic resilience by minimizing plastic hinge formation and improving structural integrity. While the system shows significant promise for low-rise buildings, challenges related to roof displacement and inter-story drift ratio in taller structures necessitate further research. These findings suggest that the multi-mushroom system offers a viable solution for seismic risk reduction, contributing to safer and more sustainable urban development in earthquake-prone areas.

Applications of Solid Viscoelastic Coupling Dampers (VCDs) in Wind and Earthquake Sensitive Tall Buildings

  • Montgomery, Michael;Ardila, Luis;Christopoulos, Constantin
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.123-135
    • /
    • 2021
  • Solid Viscoelastic Coupling Dampers (VCDs) provide distributed damping that improves the dynamic performance of tall buildings for both wind-storms and earthquakes for all amplitudes of vibration. They are configured in place of typical structural members in tall buildings and therefore do not occupy any architectural space. This paper summarizes the research and development at the University of Toronto in collaboration with Nippon Steel Engineering, 3M and Kinetica over the past two decades. In addition, impact studies on buildings incorporating the VCDs are presented, consisting of a wind sensitive 66-story building in Toronto, a dual-wind and seismic performance-based design of a 4-tower development in Manila and finally a 630 meter Megatall building in Southeast Asia in a severe seismic environment. In all applications the VCDs are shown to provide significant benefits in the dynamic performance under both wind and earthquake loading in a cost-effective manner.

Seismic Response Analysis and Performance Evaluation of Wind-Designed Concentrically Braced Steel Highrise Buildings under Moderate Seismicity (중진대의 지진환경하에서 내풍설계된 초고층 철골조 중심가새골조의 지진응답해석 및 내진성능평가)

  • Lee, Cheol-Ho;Kim, Seon-Woong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.33-42
    • /
    • 2005
  • Even in moderate to low seismic regions like Korean peninsular where wind loading usually governs the structural design of a tall builidng, the probable structural impact of the 500-year design basis earthquake (DBE) or the 2400-year maximum credible earthquake (MCE) on the selected structural system should be considered at least in finalizing the design. In this study, seismic performance evaluation was conducted for concentrically braced steel highrise buildings that were only designed for wind by following the assumed domestic design practice. It was found that wind-designed concentrically braced steel highrise buildings possess significantly increased elastic seimsic capacity due to the system overstrength resulting from the wind-serviceability criterion and the width-to-thickness ratio limits on steel members. The strength demand-to-strength capacity study based on the response spectrum analysis revealed that, due to the system overstrength factors mentioned above, wind-designed concentrically braced steel highrise buildings having a slenderness ratio of larger than six can withstand elastically even the maximum credible earthquake at the performance level of immediate occupancy.

Elastic Horizontal Response of a Structure to Bedrock Earthquake Considering the Nonlinearity of the Soil Layer (지반의 비선형성을 고려한 암반지진에 의한 구조물의 수평방향 탄성거동)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.53-62
    • /
    • 2002
  • Site soil condition affects significantly on the seismic response of a structure and is a critical factor for the performance based seismic design of a structure. In this paper, the effects of nonlinear soil properties on the elastic response spectra of a structure including the nonlinearity of a soil due to the earthquake excitation is investigated using one step finite element approach for the entire soil structure system and approximate linear iterative procedure to simulate the nonlinear soil behavior with the Ramberg-Osgood soil model. Studies were carried out for a linear SDOF system of a variable period with and without a pile group for the 1940 CI Centro earthquake recorded on ground rather than rock. The study results showed clearly that the effect of the nonlinear behavior of soft soil is very important on the elastic seismic response of a structure suggesting the necessity of the performance based seismic design.

A Fundamental Study of Performance Based Seismic Design on the Large Span Structures: The Characteristics of Elasto-Plastic Earthquake Responses of a Steel Frame with Membrane Roof (공간구조물의 성능기초 내진설계에 관한 기초연구: 강구조 골조막 구조의 탄소성 지진응답특성)

  • Nakazawa, Shoji;Cheong, Myung-Chae;Kato, Shi;Yoshino, Tatsuya;Oda, Kenshi
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.35-44
    • /
    • 2007
  • The characteristics of elasto-plastic responses of a gymnasium building which is a steel braced frame with membrane roof is discussed as a basic research on the performance based seismic design of large span structures, in this paper. Under the strong earthquake motions, the formation of plastic hinges on braces attached by the bottom frame make reduce down the stresses and displacements of upper structures, and vertical acceleration of the membrane is tend to increase but maximum response of strain and corresponding stresses are tend to be reduced.

  • PDF