• Title/Summary/Keyword: seismic performance and design

Search Result 1,416, Processing Time 0.024 seconds

Seismic performance assessment of steel building frames equipped with a novel type of bending dissipative braces

  • Taiyari, Farshad;Mazzolani, Federico M.;Bagheri, Saman
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.525-535
    • /
    • 2019
  • The seismic performance of steel frames equipped with a particular type of bending dissipative braces (BDBs) having U elements, which has recently been introduced and tested by the authors, is investigated. For this purpose, two structural systems, i.e., simple and dual steel building frames, both with diagonal BDBs and different number of stories, are considered. After providing a design method of this new BDB, the detailed structural models are developed in the OpenSees platform to perform nonlinear dynamic analyses. Seismic performance factors like ductility, overstrength, response modification and deflection amplification factors are calculated using incremental dynamic analysis (IDA). In addition, to assess the damage probability of the structural models, their seismic fragilities are developed. The results show high energy dissipation capacity of both structural systems while the number of U elements needed for the bracing system of each story in the moment frames are less than those in the corresponding non-moment (simple) frames. The average response modification and deflection amplification factors for both structural schemes are obtained about 8.6 and 5.4, respectively, which are slightly larger than the corresponding recommended values of ASCE for the typical buckling-restrained braces (BRBs).

Hybrid simulation tests of high-strength steel composite K-eccentrically braced frames with spatial substructure

  • Li, Tengfei;Su, Mingzhou;Guo, Jiangran
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.381-397
    • /
    • 2021
  • Based on the spatial substructure hybrid simulation test (SHST) method, the seismic performance of a high-strength steel composite K-eccentrically braced frame (K-HSS-EBF) structure system is studied. First, on the basis of the existing pseudostatic experiments, a numerical model corresponding to the experimental model was established using OpenSees, which mainly simulated the shear effect of the shear links. A three-story and five-span spatial K-HSS-EBF was taken as the prototype, and SHST was performed with a half-scale SHST model. According to the test results, the validity of the SHST model was verified, and the main seismic performance indexes of the experimental substructure under different seismic waves were studied. The results show that the hybrid simulation results are basically consistent with the numerical simulation results of the global structure. The deformation of each story is mainly concentrated in the web of the shear link owing to shear deformation. The maximum interstory drifts of the model structure during Strength Level Earthquake (SLE) and Maximum Considered Earthquake (MCE) meet the demands of interstory limitations in the Chinese seismic design code of buildings. In conclusion, the seismic response characteristics of the K-HSS-EBFs are successfully simulated using the spatial SHST, which shows that the K-HSS-EBFs have good seismic performance.

Combining in-plane and out-of-plane behaviour of masonry infills in the seismic analysis of RC buildings

  • Manfredi, V.;Masi, A.
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.515-537
    • /
    • 2014
  • Current seismic codes (e.g. the NTC08 Italian code and the EC8 European code) adopt a performance-based approach for both the design of new buildings and the assessment of existing ones. Different limit states are considered by verifying structural members as well as non structural elements and facilities which have generally been neglected in practice. The key role of non structural elements on building performance has been shown by recent earthquakes (e.g. L'Aquila 2009) where, due to the extensive damage suffered by infills, partitions and ceilings, a lot of private and public buildings became unusable with consequent significant socio-economic effects. Furthermore, the collapse of infill panels, particularly in the case of out-of-plane failure, represented a serious source of risk to life safety. This paper puts forward an infill model capable of accounting for the effects arising from prior in-plane damage on the out-of-plane capacity of infill panels. It permits an assessment of the seismic performance of existing RC buildings with reference to both structural and non structural elements, as well as of their mutual interaction. The model is applied to a building type with RC framed structure designed only to vertical loads and representative of typical Italian buildings. The influence of infill on building performance and the role of the out-of-plane response on structural response are also discussed.

Seismic performance of emergency diesel generator for high frequency motions

  • Jeong, Young-Soo;Baek, Eun-Rim;Jeon, Bub-Gyu;Chang, Sung-Jin;Park, Dong-Uk
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1470-1476
    • /
    • 2019
  • The nuclear power plants in South Korea have been designed in accordance with the U.S. Regulatory Guide 1.60 (R.G 1.60) design spectrum of which the peak frequency range is 2-10 Hz. The characteristics of the earthquakes at the Korea nuclear power plant sites were observed to be closer to that of Central and Eastern United States (CEUS) than the R.G 1.60, which is a lower amplification in a low frequency range, and a higher amplification in a high frequency range. The possibility of failure for sensitive power plant components in the high frequency range has been considered and evaluated. In this study, in order to improve the reliability of nuclear plant and administrative control procedures, seismic tests of an emergency diesel generator (EDG) were conducted using a shaking table under both high and low frequency ranges. From the tests, oil/lubricant leaks from the bolt connections, the fuel filter and the fuel inlet were observed. Therefore, the check list of nuclear plant components after an earthquake should include bolt connections of EDG as well as anchor bolts.

The influence of concrete degradation on seismic performance of gravity dams

  • Ahmad Yamin Rasa;Ahmet Budak;Oguz Akin Duzgun
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.59-75
    • /
    • 2024
  • This paper presents a dam-reservoir interaction model that includes, water compressibility, sloshing of surface water, and radiation damping at the far-end reservoir, to investigate the influence of concrete deterioration on seismic behavior along with seismic performance of gravity dams. Investigations on seismic performance of the dam body have been conducted using the linear time-history responses obtained under six real and 0.3 g normalized earthquake records with time durations from 10 sec to 80 sec. The deterioration of concrete is assumed to develop due to mechanical and chemical actions over the dam lifespan. Several computer programs have been developed in FORTRAN 90 and MATLAB programming languages to analyze the coupled problem considering two-dimensional (2D) plane-strain condition. According to the results obtained from this study, the dam structure shows critical responses at the later ages (75 years) that could cause disastrous consequences; the critical effects of some earthquake loads such as Chi-Chi with 36.5% damage and Loma with 56.2% damage at the later ages of the selected dam body cannot be negligible; and therefore, the deterioration of concrete along with its effects on the dam response should be considered in analysis and design.

Steel hysteretic column dampers for seismic retrofit of soft-first-story structures

  • Javidan, Mohammad Mahdi;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.259-272
    • /
    • 2020
  • In this study a new hysteretic damper for seismic retrofit of soft-first story structures is proposed and its seismic retrofit effect is evaluated. The damper consists of one steel column member and two flexural fuses at both ends made of steel plates with reduced section, which can be placed right beside existing columns in order to minimize interference with passengers and automobiles in the installed bays. The relative displacement between the stories forms flexural plastic hinges at the fuses and dissipate seismic energy. The theoretical formulation and the design procedure based on plastic analysis is provided for the proposed damper, and the results are compared with a detailed finite-element (FE) model. In order to apply the damper in structural analysis, a macromodel of the damper is also developed and calibrated by the derived theoretical formulas. The results are compared with the detailed FE analysis, and the efficiency of the damper is further validated by the seismic retrofit of a case study structure and assessing its seismic performance before and after the retrofit. The results show that the proposed hysteretic damper can be used effectively in reducing damage to soft-first story structures.

Seismic response of soil-structure interaction using the support vector regression

  • Mirhosseini, Ramin Tabatabaei
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.115-124
    • /
    • 2017
  • In this paper, a different technique to predict the effects of soil-structure interaction (SSI) on seismic response of building systems is investigated. The technique use a machine learning algorithm called Support Vector Regression (SVR) with technical and analytical results as input features. Normally, the effects of SSI on seismic response of existing building systems can be identified by different types of large data sets. Therefore, predicting and estimating the seismic response of building is a difficult task. It is possible to approximate a real valued function of the seismic response and make accurate investing choices regarding the design of building system and reduce the risk involved, by giving the right experimental and/or numerical data to a machine learning regression, such as SVR. The seismic response of both single-degree-of-freedom system and six-storey RC frame which can be represent of a broad range of existing structures, is estimated using proposed SVR model, while allowing flexibility of the soil-foundation system and SSI effects. The seismic response of both single-degree-of-freedom system and six-storey RC frame which can be represent of a broad range of existing structures, is estimated using proposed SVR model, while allowing flexibility of the soil-foundation system and SSI effects. The results show that the performance of the technique can be predicted by reducing the number of real data input features. Further, performance enhancement was achieved by optimizing the RBF kernel and SVR parameters through grid search.

The Experimental Study on Seismic Behavior of Circular-Tied Columns (원형띠철근 기둥의 내진거동에 관한 실험적 연구)

  • 석상근;고성현;윤석구;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.369-374
    • /
    • 2000
  • This study was conducted to investigate the seismic behavior assessment of circlular-tied bridge piers, particularly with regard to assessing the displacement ductility. The experimental variables of bridge piers test consisted of transverse steel details, amount and spacing different axial load levels etc. The test results indicated that reinforcement concrete bridge piers with confinement steel by the code specification exhibited sufficient ductile behavior and seismic performance. Aldo, it is found that current seismic design code specification of confinement steel requirements may be revised.

  • PDF

Seismic response of spring-damper-rolling systems with concave friction distribution

  • Wei, Biao;Wang, Peng;He, Xuhui;Jiang, Lizhong
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.25-43
    • /
    • 2016
  • The uneven distribution of rolling friction coefficient may lead to great uncertainty in the structural seismic isolation performance. This paper attempts to improve the isolation performance of a spring-damper-rolling isolation system by artificially making the uneven friction distribution to be concave. The rolling friction coefficient gradually increases when the isolator rolls away from the original position during an earthquake. After the spring-damper-rolling isolation system under different ground motions was calculated by a numerical analysis method, the system obtained more regular results than that of random uneven friction distributions. Results shows that the concave friction distribution can not only dissipate the earthquake energy, but also change the structural natural period. These functions improve the seismic isolation efficiency of the spring-damper-rolling isolation system in comparison with the random uneven distribution of rolling friction coefficient, and always lead to a relatively acceptable isolation state even if the actual earthquake significantly differs from the design earthquake.

Steel hexagonal damper-brace system for efficient seismic protection of structures

  • Mohammad Mahdi, Javidan;Jinkoo, Kim
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.683-695
    • /
    • 2022
  • Conventional braces are often used to provide stiffness to structures; however due to buckling they cannot be used as seismic energy dissipating elements. In this study, a seismic energy dissipation device is proposed which is comprised of a bracing member and a steel hysteretic damper made of steel hexagonal plates. The hexagonal shaped designated fuse causes formation of plastic hinges under axial deformation of the brace. The main advantages of this damper compared to conventional metallic dampers and buckling-restrained braces are the stable and controlled energy dissipation capability with ease of manufacture. The mechanical behavior of the damper is formulated first and a design procedure is provided. Next, the theoretical formulation and the efficiency of the damper are verified using finite element (FE) analyses. An analytical model of the damper is established and its efficiency is further investigated by applying it to seismic retrofit of a case study structure. The seismic performance of the structure is evaluated before and after retrofit in terms of maximum interstory drift ratio, top story displacement, residual displacement, and energy dissipation of dampers. Overall, the median of maximum interstory drift ratios is reduced from 3.8% to 1.6% and the residual displacement decreased in the x-direction which corresponds to the predominant mode shape of the structure. The analysis results show that the developed damper can provide cost-effective seismic protection of structures.