• Title/Summary/Keyword: seismic performance and design

Search Result 1,416, Processing Time 0.027 seconds

Performance-based seismic design of reinforced concrete ductile buildings subjected to large energy demands

  • Teran-Gilmore, Amador;Sanchez-Badillo, Alberto;Espinosa-Johnson, Marco
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.69-91
    • /
    • 2010
  • Current seismic design codes do not contemplate explicitly some variables that are relevant for the design of structures subjected to ground motions exhibiting large energy content. Particularly, the lack of explicit consideration of the cumulative plastic demands and of the degradation of the hysteretic cycle may result in a significant underestimation of the lateral strength of reinforced concrete structures built on soft soils. This paper introduces and illustrates the use of a numerical performance-based methodology for the predesign of standard-occupation reinforced concrete ductile structures. The methodology takes into account two limit states, the performance of the non-structural system, and in the case of the life safety limit state, the effect of cumulative plastic demands and of the degradation of the hysteretic cycle on the assessment of structural performance.

Performance based optimal seismic retrofitting of yielding plane frames using added viscous damping

  • Lavan, O.;Levy, R.
    • Earthquakes and Structures
    • /
    • v.1 no.3
    • /
    • pp.307-326
    • /
    • 2010
  • This paper is concerned with the optimal seismic design of added viscous dampers in yielding plane frames. The total added damping is minimized for allowable values of local performance indices under the excitation of an ensemble of ground motions in both regular and irregular structures. The local performance indices are taken as the maximal inter-story drift of each story and/or the normalized hysteretic energy dissipated at each of the plastic hinges. Gradients of the constraints with respect to the design variables (damping coefficients) are derived, via optimal control theory, to enable an efficient first order optimization scheme to be used for the solution of the problem. An example of a ten story three bay frame is presented. This example reveals the following 'fully stressed characteristics' of the optimal solution: damping is assigned only to stories for which the local performance index has reached the allowable value. This may enable the application of efficient and practical analysis/redesign type methods for the optimal design of viscous dampers in yielding plane frames.

Effect of staircase on seismic performance of RC frame building

  • Kumbhar, Onkar G.;Kumar, Ratnesh;Adhikary, Shrabony
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.375-390
    • /
    • 2015
  • Staircase is a vertical transportation element commonly used in every multistoried structure. Inclined flights of staircase are usually casted monolithically with RC frame. The structural configuration of stairs generally introduces discontinuities into the typical regular reinforced concrete frame composed of beams and columns. Inclined position of flight transfers both vertical as well as horizontal forces in the frame. Under lateral loading, staircase in a multistory RC frame building develops truss action creating a local stiffening effect. In case of seismic event the stiff area around staircase attracts larger force. Therefore, special attention is required while modeling and analyzing the building with staircase. However, in general design practice, designers usually ignore the staircase while modeling either due to ignorance or to avoid complexity. A numerical study has been conducted to examine the effect of ignoring staircase in modeling and design of RC frame buildings while they are really present in structure, may be at different locations. Linear dynamic analysis is performed on nine separate building models to evaluate influence of staircase on dynamic characteristics of building, followed by nonlinear static analysis on the same models to access their seismic performance. It is observed that effect of ignoring staircase in modeling is severe and leads to unsafe structure. Effect of location and orientation of staircase is also important in determining seismic performance of RC frame buildings.

Seismic Design and Isolation Design for Highway Bridges (교량구조물의 내진설계 및 면진설계(교량 받침을 중심으로))

  • 전규식
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.115-122
    • /
    • 1998
  • Earthquake damage civil engineering structures every year in the world and bridges are no exception. Bridge structures have proven to be vulnerable to earthquake, sustaining damage to substructure and foundation and being totally destroys as superstructures collapse from their supporting elements. The poor seismic performance of bridge structures is surprising in view of the substantial advance made in design and construction for vertical load. Recently, bridge spans have been pushed further than before, alignment has become increasingly complex and aesthetic requirement have been become more demanding. To reduce the seismic force and to improve the safety of the advanced bridges, the bridge bearings which are the substructures and foundations and their connections to the superstructure become more important and critical elements. Therefore, the functions about seismic devices to be using as bridge bearing are discussed.

  • PDF

Design and Implementation of Seismic Data Acquisition System using MEMS Accelerometer (MEMS형 가속도 센서를 이용한 지진 데이터 취득 시스템의 설계 및 구현)

  • Choi, Hun;Bae, Hyeon-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.851-858
    • /
    • 2012
  • In this paper, we design a seismic data acquisition system(SDAS) and implement it. This system is essential for development of a noble local earthquake disaster preventing system in population center. In the system, we choose a proper MEMS-type triaxial accelerometer as a sensor, and FPGA and ARM processor are used for implementing the system. In the SDAS, each module is realized by Verilog HDL and C Language. We carry out the ModelSim simulation to verify the performances of important modules. The simulation results show that the FPGA-based data acquisition module can guarantee an accurate time-synchronization for the measured data from each axis sensor. Moreover, the FPGA-ARM based embedded technology in system hardware design can reduce the system cost by the integration of data logger, communication sever, and facility control system. To evaluate the data acquisition performance of the SDAS, we perform experiments for real seismic signals with the exciter. Performances comparison between the acquired data of the SDAS and the reference sensor shows that the data acquisition performance of the SDAS is valid.

Application of Capacity Design Methodology to RC Coupled Shear Wall (능력설계에 의한 RC 연결전단벽 구조의 내진설계)

  • Lee, Han-Seon;Jeong, Seong-Wook;Ko, Dong-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.295-298
    • /
    • 2005
  • Coupled shear wall(CSW) has been adopted as a lateral force resisting system in building frame structures. New Zealand code recommends the capacity design in designing the CSW. Capacity design based on using moment redistribution of member force may provide the economical benefit to designer. In this study, CSW's are designed by both capacity design and strength -based design. The design results and the seismic performance are compared by using nonlinear static analyses. The amount of reinforcement of shear wall and the section area of steel coupling beams by capacity design appear to be reduced by 19$\%$ and 17$\%$, respectively. Also CSW designed by capacity design shows good seismic performance at the ultimate state.

  • PDF

Soil-pile interaction effects in wharf structures under lateral loads

  • Doran, Bilge;Seckin, Aytug
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.267-276
    • /
    • 2014
  • Wharfs are essential to shipping and support very large gravity loads on both a short-term and long-term basis which cause quite large seismic internal forces. Therefore, these structures are vulnerable to seismic activities. As they are supported on vertical and/or batter piles, soil-pile interaction effects under earthquake events have a great importance in seismic resistance which is not yet fully understood. Seismic design codes have become more stringent and suggest the use of new design methods, such as Performance Based Design principles. According to Turkish Code for Coastal and Port Structures (TCCS 2008), the interaction between soil and pile should somehow be considered in the nonlinear analysis in an accurate manner. This study aims to explore the lateral load carrying capacity of recently designed wharf structures considering soil-pile interaction effects for different soil conditions. For this purpose, nonlinear structure analysis according to TCCS (2008) has been performed comparing simplified and detailed modeling results.

Earthquake performance of the two approach viaducts of the bosphorus suspension bridge

  • Bas, Selcuk;Apaydin, Nurdan Memisoglu;Celep, Zekai
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.387-406
    • /
    • 2016
  • The main purpose of this paper is to determine the dynamic characteristics and the structural stability of the two approach viaducts of the Bosphorus Suspension Bridge under the expected stresses that would be caused during earthquake conditions. The Ortakoy and the Beylerbeyi approach viaducts constitute the side spans of the bridge at two locations. The bridge's main span over the Bosphorus is suspended, whereas they are supported at the base at either end. For the numerical investigation of the viaducts, 3-D computational structural finite element-FE models were developed. Their natural frequencies and the corresponding mode shapes were obtained, analyzed, presented and compared. The performances of the viaducts, under earthquake conditions, were studied considering the P-Delta effects implementing the push-over (POA) and the non-linear time-history analyses (NTHA). For the NTHA, three earthquake ground motions were generated depending on the location of the bridge. Seismic performances of the viaducts were determined in accordance with the requirements of the Turkish Seismic Code for the Earthquake Design of Railways Bridges (TSC-R/2008) and those of Caltrans (CALTRANS-2001) given for Seismic Design of Steel Bridges, separately. Furthermore, the investigation was extended for evaluating the possible need for retrofitting in the future. After the analysis of the resultant data, a retrofit recommendation for the viaducts was presented.

Experimental research on seismic behavior of a composite RCS frame

  • Men, Jinjie;Zhang, Yarong;Guo, Zhifeng;Shi, Qingxuan
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.971-983
    • /
    • 2015
  • To promote greater acceptance and use of composite RCS systems, a two-bay two-story frame specimen with improved composite RCS joint details was tested in the laboratory under reversed cyclic loading. The test revealed superior seismic performance with stable load versus story drift response and excellent deformation capacity for an inter-story drift ratio up to 1/25. It was found that the failure process of the frame meets the strong-column weak-beam criterion. Furthermore, cracking inter-story drift ratio and ultimate inter-story drift ratio both satisfy the limitation prescribed by the design code. Additionally, inter-story drift ratios at yielding and peak load stage provide reference data for Performance-Based Seismic Design (PBSD) approaches for composite RCS frames. An advantage over conventional reinforced concrete and steel moment frame systems is that the displacement ductility coefficient of the RCS frame system is much larger. To conclude, the test results prove that composite RCS frame systems perform satisfactorily under simulated earthquake action, which further validates the reliability of this innovative system. Based on the test result, some suggestions are presented for the design of composite RCS frame systems.

Evaluation of Seismic Safety in School Buildings Applying Artificial Seismic Waves in Earthquake Magnitude of Korea (한국형 중진지역의 인공지진파 생성을 통한 학교건물 내진안전성 평가)

  • Kim, Seung-Hyun;Park, Young-Binuk;Kang, Jun-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • This report describes the development and stability evaluation of a seismic retrofit method to evaluate the seismic performance of existing school buildings by analyzing the earthquake waveforms that occurred in Korea. Currently, Facilities for seismic retrofit designed for excessive reinforcement are being applied. To compensate for this, optimised the retrofit mothod suitable for domestic situation considering the characteristics of the seismic region, generated a Korean-style artificial seismic wave that meets the seismic design criteria, which is less frequent than other countries.