• Title/Summary/Keyword: seismic performance and design

Search Result 1,416, Processing Time 0.03 seconds

Multilevel performance-based procedure applied to moderate seismic zones in Europe

  • Catalan, Ariel;Foti, Dora
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.57-76
    • /
    • 2015
  • The Performance-based Earthquake Engineering (PBEE) concept implies the definition of multiple target performance levels of damage which are expected to be achieved (or not exceeded), when the structure is subjected to earthquake ground motion of specified intensity. These levels are associates to different return period (RP) of earthquakes and structural behaviors quantified with adopted factors or indexes of control. In this work an 8-level PBEE study is carried out, finding different curves for control index or Engineering Demand Parameters (EDP) of levels that assess the structural behavior. The results and the curves for each index of control allow to deduce the structural behavior at an a priori unspecified RP. A general methodology is proposed that takes into account a possible optimization process in the PBEE field. Finally, an application to 8-level seismic performance assessment to structure in a Spanish seismic zone permits deducing that its behavior is deficient for high seismic levels (RP > 475 years). The application of the methodology to a low-to-moderate seismic zone case proves to be a good tool of structural seismic design, applying a more sophisticated although simple PBEE formulation.

Performance based design optimum of CBFs using bee colony algorithm

  • Mansouri, Iman;Soori, Sanaz;Amraie, Hamed;Hu, Jong Wan;Shahbazi, Shahrokh
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.613-622
    • /
    • 2018
  • The requirement to safe and economical buildings caused to the exploitation of nonlinear capacity structures and optimization of them. This requirement leads to forming seismic design method based on performance. In this study, concentrically braced frames (CBFs) have been optimized at the immediate occupancy (IO) and collapse prevention (CP) levels. Minimizing structural weight is taken as objective function subjected to performance constraints on inter-story drift ratios at various performance levels. In order to evaluate the seismic capacity of the CBFs, pushover analysis is conducted, and the process of optimization has been done by using Bee Algorithm. Results indicate that performance based design caused to have minimum structural weight and due to increase capacity of CBFs.

A Study on Seismic Performance of External Reinforcement for Unreinforced Masonry Buildings (비보강 조적조 건축물의 외부 보강에 따른 내진성능 연구)

  • Jong-Yeon Kim;Jong Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • In this study, we evaluated the seismic performance of a masonry building that was not designed to be earthquake-resistant and attempted to improve the seismic performance by adopting a seismic reinforcement method on the exterior of the building. In addition, the building seismic design standards and commentary(KDS 41 17 00:2019) and existing facility(building) seismic performance evaluation methods were applied to evaluate seismic performance, and a pushover analysis was performed using non-linear static analysis. As the result of this study, it was determined that seismic reinforcement was urgent because the distribution rate of earthquake-resistant design of houses in Korea was low and masonry structures accounted for a large proportion of houses. When reinforcing the steel beam-column+brace frame in a masonry building, the story drift angle was 0.043% in the X direction and 0.047% in the Y direction, indicating that it satisfied the regulations. The gravity load resistance capacity by performance level was judged to be a safe building because it was habitable in both X and Y directions. In conclusion, it is believed that the livability and convenience of the house can be secured by reinforcing the exterior of the building and the seismic performance and behavior of the structure can be clearly predicted.

Inter-story Drift Design Method to Improve the Seismic Performance for Steel Moment Frames (철골모멘트골조의 내진성능향상을 위한 층간변위조절기법)

  • Choi, Se-Woon;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.707-714
    • /
    • 2011
  • The inter-story drift ratio is used to evaluate the damage of buildings by the earthquake. This is known that as the inter-story drift ratio decreases, the seismic damage decreases. Although to reduce the inter-story drift ratio is the important issue in the seismic design, no practical inter-story drift design method has bean developed. This study presents an optimal inter-story drift design method to improve the seismic performance of the steel moment frames using the resizing algorithm. The objective function of the proposed method is to minimize the differences of the inter-story drift ratios so that the inter-story drift ratios of the building could be distributed evenly and be reduced. Because this method redesigns the sectional properties of structural members base on the displacement participation factor calculated by the unit-load method, this can improve the seismic performance of the structure without the iterative structural analysis. The efficiency of this algorithm was demonstrated by the application to steel moment frames.

Seismic Performance Evaluation of Building Structures Based on the Adaptive Lateral Load Distribution (적응적 횡하중 분배방법을 이용한 건축구조물의 내진성능평가)

  • 이동근;최원호;정명채
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.39-58
    • /
    • 2004
  • It is very important that predict the inelastic seismic behavior exactly for seismic performance evaluation of a building in the performance based seismic design. Evaluation method of seismic performance based on the pushover analysis reflected in PBSE was developed by some researchers. For the evaluation of inelastic global and local seismic responses by pushover analysis exactly. lateral load distribution should be adjusted and reflected the dynamic characteristics of structural system and various seismic ground motions. And performance point should be determined based on the evaluation of reasonable deformation capacity of a building more exactly. An effective method based on the improved the adaptive lateral load distribution and the equivalent responses of a multistory building is proposed in this study to efficiently estimate the accurate inelastic seismic responses. The proposed method can be used to evaluate the seismic performance for the global inelastic behavior of a building and to accurately estimate its local inelastic seismic responses. In order to demonstrate the accuracy and validity of this method, inelastic seismic responses estimated by the proposed method are compared with those obtained from other analytical methods.

An Evaluation of Seismic Performance for Existing School Building Using Capacity Spectrum Method (성능스펙트럼법을 이용한 기존 학교 건축물의 내진성능평가 및 보강효과 검증)

  • Jang, Jeong-Hyun;Hwang, Ji-Hoon;Yang, Kyeong-Seok;Takashi, Kamiya;Choi, Jae-Hyouk
    • Journal of Advanced Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • Large scale earthquake was occurred in different parts of the world like Japan (in 1995), Republic of Pakistan (2005), in China (2008) etc and enormous structures were damaged. As a result of collapse of school buildings structures numerous students are died and it had a big impact on the international community. Therefore, the interest of preparing the seismic resistant school building structures in our country is increases as school building are used as emergency shelter for local residents. But the current standard of seismic design ratio of 3.7% is applied for school building in Korea which is only significant earthquake damage is expected. In order to overcome the current situation, seismic performance evaluation is carried out for the existing school building and an accurate and appropriate seismic retrofit is required based on performance evaluation to upgrade the existing school buildings. In this paper, nonlinear analysis on existing school buildings for ATC-40(Applied Technology Council, ATC) and FEMA-356(Federal Emergency Management Agency, FEMA) are carried out using the capacity spectrum method to evaluate seismic performance and to determine the need for retrofitting. In addition, after reinforcement to enhance the seismic performance is applied the seismic performance evaluation is carried out to verify the effectiveness of seismic retrofit.

Seismic Performance Preliminary Evaluation Method of Reinforced Concrete Apartments with Bearing Wall system (기존 철근콘크리트 벽식 공동주택의 내진 성능 예비 평가법에 관한 연구)

  • Chung, Lan;Woo, Sung-Sik;Choi, Ki-Young;Park, Tae-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.293-300
    • /
    • 2007
  • In Korea, the seismic design regulations was established since 1988 about regularity scale of structures. However, It was not established about seismic performance and evaluation method as the most existing buildings was constructed before Earthquake-Resistant Design(1988). In this study, for model structures which are 4 units of non-seismic designed apartment and 3 units of seismic designed in Korea performed seismic performance evaluation by suggested KISTC (2004). And the result compare to evaluate Capacity Spectrum Method by using MIDAS Gen and SDS. As a result, we observed that suggested KISTC's method have overestimated for shear stress and drift index. The purpose of this study provides most conformity seismic performance evaluation process and the appropriate method of calculating the seismic performance index in Korea.

A Study on the Seismic Behavior of Small-Size Reinforced Concrete Buildings in Korea (국내 소규모 철근콘크리트 건축물의 내진거동 고찰)

  • Kim, Taewan;Eom, Taesung;Kim, Chul-Goo;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.171-180
    • /
    • 2014
  • Since the execution of structural design by professional structural engineers is not mandatory for small-size buildings in Korea, structural design is conducted by architects or contractors resulting in concern about the seismic safety of the buildings. Therefore, the Korean Structural Engineers Association proposed dedicated structural design criteria in 2012. The criteria were developed based on a deterministic approach in which the structural members are designed only with information of story and span length of the buildings and without structural analyses. However, due to the short time devoted to their development, these criteria miss satisfactory basis and do not deal with structural walls popularly used in Korea. Accordingly, the Ministry of Land, Infrastructure and Transport launched a research on the 'development of structural performance enhancement technologies for small-size buildings against earthquakes and climate changes'.. As part of this research, this paper intends to establish direction for the preparation of deterministic structural design guidelines for seismic safety of domestic small-size reinforced concrete buildings. To that goal, a typical plan of these buildings is selected considering frames only and frames plus walls, and then design is conducted by changing the number of stories and span length. Next, the seismic performance is analyzed by nonlinear static pushover analysis. The results show that the structural design guidelines should be developed by classifying frames only and frames plus walls. The size and reinforcement of structural elements should be provided in the middle level of the current Korean Building Code and criteria for small buildings by considering story and span length for buildings with frames only, and determined by considering the shape and location of walls and the story and span length as well for buildings with frames plus walls. It is recommended that the design of walls should be conducted by reducing the amount of walls along with symmetrically located walls.

Seismic performance of moment connections in steel moment frames with HSS columns

  • Nunez, Eduardo;Torres, Ronald;Herrera, Ricardo
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.271-286
    • /
    • 2017
  • The use of Hollow Structural Sections (HSS) provides an alternative for steel buildings in seismic zones, with the advantage over WF columns that the HSS columns have similar resistance along both axes and enhanced performance under flexure, compression and torsion with respect to other columns sections. The HSS columns have shown satisfactory performance under seismic loads, such as observed in buildings with steel moment frames in the Honshu earthquake (2011). The purpose of this research is to propose a new moment connection, EP-HSS ("End-plate to Hollow Structural Section"), using a wide flange beam and HSS column where the end plate falls outside the range of prequalification established in the ANSI/AISC 358-10 Specification, as an alternative to the traditional configuration of steel moment frames established in current codes. The connection was researched through analytical, numerical (FEM), and experimental studies. The results showed that the EP-HSS allowed the development of inelastic action on the beam only, avoiding stress concentrations in the column and developing significant energy dissipation. The experiments followed the qualification protocols established in the ANSI/AISC 341-10 Specification satisfying the required performance for highly ductile connections in seismic zones, thereby ensuring satisfactory performance under seismic actions without brittle failure mechanisms.

Displacement-based seismic design of reinforced concrete columns strengthened by FRP jackets using a nonlinear flexural model

  • Cho, Chang-Geun;Yun, Hee-Cheon;Kim, Yun-Yong
    • Computers and Concrete
    • /
    • v.6 no.2
    • /
    • pp.95-108
    • /
    • 2009
  • In the current research, a displacement-based seismic design scheme to retrofit reinforced concrete columns using FRP composite materials has been proposed. An accurate prediction for the nonlinear flexural analysis of FRP jacketed concrete members has been presented under multiaxial constitutive laws of concrete and composite materials. Through modification of the displacement coefficient method (DCM) and the direct displacement-based design method (DDM) of reinforced concrete structures, two algorithms for a performance-based seismic retrofit design of reinforced concrete columns with a FRP jacket have been newly introduced. From applications to retrofit design it is known that two methods are easy to apply in retrofit design and the DCM procedure underestimates the target displacement to compare with the DDM procedure.