• Title/Summary/Keyword: seismic performance and design

Search Result 1,415, Processing Time 0.022 seconds

Overview of Performance-Based Seismic Design of Building Structures in China

  • Li, Guo-Qiang;Xu, Yan-Bin;Sun, Fei-Fei
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.169-179
    • /
    • 2012
  • The development history, the current situation and the future of the performance-based seismic design of building structures in China are presented in this paper. Firstly, the evolution of performance-based seismic design of building structures specified in the Chinese codes for seismic design of buildings of the edition 1974, 1978, 1989, 2001 and 2010 are introduced and compared. Secondly, in two parts, this paper details the provisions of performance-based seismic design in different Chinese codes. The first part is about the "Code for Seismic Design of Buildings" (GB50011) (edition 1989, 2001 and 2010) and "Technical Specification for Concrete Structures of Tall Building", which presents the concepts and methods of performance-based seismic design adopted in Chinese codes; The second part is about "Management Provisions for Seismic Design of Outof-codes High-rise Building Structures" and "Guidelines for Seismic Design of Out-of-codes High-rise Building Structures", which concludes the performance-based seismic design requirements for high-rise building structures over the relevant codes in China. Finally, according to those mentioned above, this paper pointed out the imperfections of current performance-based seismic design in China and proposed the possible direction for further improvement.

Performance-Based Evaluation of Seismic Design Proposals for RC Ordinary Moment Frames by Spectrum Revision (설계스펙트럼의 개정에 따른 철근콘크리트 보통모멘트골조의 내진성능수준 평가)

  • Shim, JungEun;Choi, Insub;Kim, JunHee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.211-217
    • /
    • 2022
  • New buildings have been designed using different seismic design standards that have been revised. However, the seismic performance of existing buildings is evaluated through the same performance evaluation guidelines. Existing buildings may not satisfy the performance targets suggested in the current guidelines, but there are practical limitations to discriminating the existing buildings with poor seismic performance through a full investigation. In this regard, to classify buildings with poor seismic performance according to the applied standard, this study aimed to evaluate performance-based investigation of the seismic design proposals of buildings with different design standards. The target buildings were set as RC ordinary moment frames for office occupancy. Changes in seismic design criteria by period were analyzed, and the design spectrum changes of reinforced concrete ordinary moment resisting frames were compared to analyze the seismic load acting on the building during design. The seismic design plan was derived through structural analysis of the target model, compared the member force and cross-sectional performance, and a preliminary evaluation of the seismic performance was performed to analyze the performance level through DCR. As a result of the seismic performance analysis through the derived design, the reinforced concrete ordinary moment frame design based on AIK 2000 has an insufficient seismic performance level, so buildings built before 2005 are likely to need seismic reinforcement.

Can irregular bridges designed as per the Indian standards achieve seismic regularity?

  • Thomas, Abey E.;Somasundaran, T.P.;Sajith, A.S.
    • Advances in Computational Design
    • /
    • v.2 no.1
    • /
    • pp.15-28
    • /
    • 2017
  • One of the major developments in seismic design over the past few decades is the increased emphasis for limit states design now generally termed as Performance Based Engineering. Performance Based Seismic Design (PBSD) uses Displacement Based Design (DBD) methodology wherein structures are designed for a target level of displacement rather than Force Based Design (FBD) methodology where force or strength aspect is being used. Indian codes still follow FBD methodology compared to other modern codes like CalTrans, which follow DBD methodology. Hence in the present study, a detailed review of the two most common design methodologies i.e., FBD and DBD is presented. A critical evaluation of both these methodologies by comparing the seismic performance of bridge models designed using them highlight the importance of adopting DBD techniques in Indian Standards also. The inherent discrepancy associated with FBD in achieving 'seismic regularity' is highlighted by assessing the seismic performance of bridges with varied relative height ratios. The study also encompasses a brief comparison of the seismic design and detailing provisions of IRC 112 (2011), IRC 21 (2000), AASHTO LRFD (2012) and CalTrans (2013) to evaluate the discrepancies on the same in the Indian Standards. Based on the seismic performance evaluation and literature review a need for increasing the minimum longitudinal reinforcement percentage stipulated by IRC 112 (2011) for bridge columns is found necessary.

State of Practice of Performance-Based Seismic Design in Korea

  • Lee, Dong-Hun;Kim, Taejin;Kim, Jong-Ho;Kang, Dae-Eon
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.195-201
    • /
    • 2012
  • Today, a great effort to develop PBSD procedure to be utilized in Korea is given by domestic structural engineers, academics, and governmental organizations. After Great East Japan Earthquake (2011) took place, lots of clients in Korea became to concern of their buildings so that requests of seismic performance evaluation and seismic rehabilitation for existing buildings have been gradually increased. Such interests in seismic events initiated a rapid development of a series of guidelines for seismic performance evaluation and seismic performance enhancement. For new buildings, however, design guidelines for PBSD are yet well prepared in Korea and prescriptive design methods are dominant design procedure still. Herein, seismicity demands used in seismic performance evaluation and some important design parameters in NLRH are introduced. Some project examples for seismic performance evaluation and rehabilitation applying passive energy dissipation devices are also described in the latter part of paper.

Performance-based seismic analysis and design of code-exceeding tall buildings in Mainland China

  • Jiang, Huanjun;Lu, Xilin;Zhu, Jiejiang
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.545-560
    • /
    • 2012
  • Design codes provide the minimum requirements for the design of code-compliant structures to ensure the safety of the life and property. As for code-exceeding buildings, the requirements for design are not sufficient and the approval of such structures is vague. In mainland China in recent years, a large number of code-exceeding tall buildings, whether their heights exceed the limit for the respective structure type or the extent of irregularity is violated, have been constructed. Performance-based seismic design (PBSD) approach has been highly recommended and become necessary to demonstrate the performance of code-exceeding tall buildings at least equivalent to code intent of safety. This paper proposes the general methodologies of performance-based seismic analysis and design of code-exceeding tall buildings in Mainland China. The PBSD approach proposed here includes selection of performance objectives, determination of design philosophy, establishment of design criteria for structural components and systems consistent with the desirable and transparent performance objectives, and seismic performance analysis and evaluation through extensive numerical analysis or further experimental study if necessary. The seismic analysis and design of 101-story Shanghai World Financial Center Tower is introduced as a typical engineering example where the PBSD approach is followed. The example demonstrates that the PBSD approach is an appropriate way to control efficiently the seismic damage on the structure and ensure the predictable and safe performance.

Effect of connection rotation capacities on seismic performance of IMF systems

  • Han, Sang Whan;Moon, Ki-Hoon;Ha, Sung Jin
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.73-89
    • /
    • 2016
  • The seismic performance of moment frames could vary according to the rotation capacity of their connections. The minimum rotation capacity of moment connections for steel intermediate moment frames (IMF) was defined as 0.02 radian in AISC 341-10. This study evaluated the seismic performance of IMF frames with connections having a rotation capacity of 0.02 radian. For this purpose, thirty IMFs were designed according to current seismic design provisions considering different design parameters such as the number of stories, span length, and seismic design categories. The procedure specified in FEMA P695 was used for conducting seismic performance evaluation. It was observed that the rotation capacity of 0.02 radian could not guarantee the satisfactory seismic performance of IMFs. This study also conducted seismic performance evaluation for IMFs with connections having the rotation capacity of 3% and ductile connections for proposing the minimum rotation capacity of IMF connections.

Seismic Performance of Alternative Steel Structural Systems for an Equipment-Supporting Plant Structure (플랜트 설비 지지용 대안 강구조 시스템의 내진성능)

  • Kwak, Byeong Hun;Ahn, Sook-Jin;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.13-24
    • /
    • 2023
  • In this study, alternative seismic force-resisting systems for plant structure supporting equipment were designed, and the seismic performance thereof was compared using nonlinear dynamic analysis. One alternative seismic force-resisting system was designed per the requirement for ordinary moment-resisting and concentrically braced frames but with a reduced base shear. The other seismic force-resisting system was designed by accommodating seismic details of intermediate and unique moment-resisting frames and special concentrically braced frames. Different plastic hinge models were applied to ordinary and ductile systems based on the validation using existing test results. The control model obtained by code-based flexible design and/or reduction of base shear did not satisfy the seismic performance objectives, but the alternative structural system did by strengthened panel zones and a reduced effective buckling length. The seismic force to equipment calculated from the nonlinear dynamic analysis was significantly lower than the equivalent static force of KDS 41 17 00. The comparison of design alternatives showed that the seismic performance required for a plant structure could be secured economically by using performance-based design and alternative seismic-force resisting systems adopting minimally modified seismic details.

Seismic performance of a wall-frame air traffic control tower

  • Moravej, Hossein;Vafaei, Mohammadreza;Abu Bakar, Suhaimi
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.463-482
    • /
    • 2016
  • Air Traffic Control (ATC) towers play significant role in the functionality of each airport. In spite of having complex dynamic behavior and major role in mitigating post-earthquake problems, less attention has been paid to the seismic performance of these structures. Herein, seismic response of an existing ATC tower with a wall-frame structural system that has been designed and detailed according to a local building code was evaluated through the framework of performance-based seismic design. Results of this study indicated that the linear static and dynamic analyses used for the design of this tower were incapable of providing a safety margin for the required seismic performance levels especially when the tower was subjected to strong ground motions. It was concluded that, for seismic design of ATC towers practice engineers should refer to a more sophisticated seismic design approach (e.g., performance-based seismic design) which accounts for inelastic behavior of structural components in order to comply with the higher seismic performance objectives of ATC towers.

The Seismic Performance for Concrete-filled Steel Piers (콘크리트 충전 강교각의 내진 성능)

  • 정지만;장승필;인성빈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.189-196
    • /
    • 2002
  • The capacity of CFS piers has not been used to a practical design, because there is no guide of a seismic design for CFS piers. Therefore, the guide of a seismic design value is derived from tests of CFS piers in order to apply it to a practical seismic design. Steel piers and concrete-filled steel piers are tested with constant axial load using quasi-static cyclic lateral load to check ductile capacity and using the real Kobe ground motion of pseudo-dynamic test to verify seismic performance. The results prove that CFS piers have more satisfactory ductility and strength than steel piers and relatively large hysteretic damping in dynamic behaviors. The seismic performance of steel and CFS piers is quantified on the basis of the test results. These results are evaluated through comparison of both the response modification factor method by elastic response spectrum and the performance-based design method by capacity spectrum and demand spectrum using effective viscous damping. The response modification factor of CFS piers is presented to apply in seismic design on a basis of this evaluation for a seismic performance.

  • PDF

Performance-based design of seismic isolated buildings considering multiple performance objectives

  • Morgan, Troy A.;Mahin, Stephen A.
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.655-666
    • /
    • 2008
  • In the past 20 years, seismic isolation has see a variety of applications in design of structures to mitigate seismic hazard. In particular, isolation has been seen as a means of achieving enhanced seismic performance objectives, such as those for hospitals, critical emergency response facilities, mass electronic data storage centers, and similar buildings whose functionality following a major seismic event is either critical to the public welfare or the financial solvency of an organization. While achieving these enhanced performance objectives is a natural (and oftentimes requisite) application of seismic isolation, little attention has been given to the extension of current design practice to isolated buildings which may have more conventional performance objectives. The development of a rational design methodology for isolated buildings requires thorough investigation of the behavior of isolated structures subjected to seismic input of various recurrence intervals, and which are designed to remain elastic only under frequent events. This paper summarizes these investigations, and proposed a consistent probabilistic framework within which any combination of performance objectives may be met. Analytical simulations are presented, the results are summarized. The intent of this work is to allow a building owner to make informed decisions regarding tradeoffs between superstructure performance (drifts, accelerations) and isolation system performance. Within this framework, it is possible to realize the benefits of designing isolated buildings for which the design criteria allows consideration of multiple performance goals.