• Title/Summary/Keyword: seismic isolation systems

Search Result 187, Processing Time 0.022 seconds

Improvement of Seismic Safety of Nuclear Power Plants by Equipment Isolations (기기의 면진을 통한 원전의 내진안전성 향상)

  • 전영선;최인길
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.93-100
    • /
    • 2003
  • Seismic isolation systems can improve the seismic safety of nuclear power plants by decreasing seismic force transmitted to structures and equipment. This study evaluates the effectiveness of equipment seismic isolation systems by the comparison of core damage frequencies in non-isolated and isolated cases. It can be found that the seismic isolation systems increase seismic capacity of nuclear equipment and decrease core damage frequencies significantly. The effect of equipment isolation is more significant in the PGA range of 0.3g to 0.5g.

  • PDF

Modeling of triple concave friction pendulum bearings for seismic isolation of buildings

  • Yurdakul, Muhammet;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.315-334
    • /
    • 2011
  • Seismic isolated building structures are examined in this study. The triple concave friction pendulum (TCFP) is used as a seismic isolation system which is easy to be manufactured and enduring more than traditional seismic isolation systems. In the TCFP, take advantage of weight which pendulum carrying and it's geometry in order to obtain desirable result of seismic isolation systems. These systems offer advantage to buildings which subject to severe earthquake. This is result of damping force of earthquake by means of their internal constructions, which consists of multiple surfaces. As the combinations of surfaces upon which sliding is occurring change, the stiffness and effective friction change accordingly. Additionally, the mentioned the TCFP is modeled as of a series arrangement of the three single concave friction pendulum (SCFP) bearings. A two dimensional- and eight- story of a building with and without isolation system are used in the time history analysis in order to investigate of the effectiveness of the seismic isolation systems on the buildings. Results are compared with each other to emphasize efficiency of the TCFP as a seismic isolation device against the other friction type isolation system like single and double concave surfaces. The values of the acceleration, floor displacement and isolator displacement obtained from the results by using different types of the isolation bearings are compared each other. As a result, the findings show that the TCFP bearings are more effective devices for isolation of the buildings against severe earthquakes.

Seismic responses of base-isolated buildings: efficacy of equivalent linear modeling under near-fault earthquakes

  • Alhan, Cenk;Ozgur, Murat
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1439-1461
    • /
    • 2015
  • Design criteria, modeling rules, and analysis principles of seismic isolation systems have already found place in important building codes and standards such as the Uniform Building Code and ASCE/SEI 7-05. Although real behaviors of isolation systems composed of high damping or lead rubber bearings are nonlinear, equivalent linear models can be obtained using effective stiffness and damping which makes use of linear seismic analysis methods for seismic-isolated buildings possible. However, equivalent linear modeling and analysis may lead to errors in seismic response terms of multi-story buildings and thus need to be assessed comprehensively. This study investigates the accuracy of equivalent linear modeling via numerical experiments conducted on generic five-story three dimensional seismic-isolated buildings. A wide range of nonlinear isolation systems with different characteristics and their equivalent linear counterparts are subjected to historical earthquakes and isolation system displacements, top floor accelerations, story drifts, base shears, and torsional base moments are compared. Relations between the accuracy of the estimates of peak structural responses from equivalent linear models and typical characteristics of nonlinear isolation systems including effective period, rigid-body mode period, effective viscous damping ratio, and post-yield to pre-yield stiffness ratio are established. Influence of biaxial interaction and plan eccentricity are also examined.

Evaluation of Performance of the Teflon-Type Seismic Foundation Isolation System (테프론형 기초지진격리장치의 성능평가)

  • Son, Su Won;Kim, Eung Soo;Na, Geon Ha;Kim, Jin Man
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.125-135
    • /
    • 2017
  • Various seismic isolation methods are being applied to bridges and buildings to improve their seismic performance. Most seismic isolation systems are the structural seismic isolation systems. In this study, the seismic performance of geotechnical seismic isolation system capable of isolating the lower foundation of the bridge structure from ground was evaluated. The geotechnical seismic isolation system was built with teflon, and the model structure was made by adopting the similitude law. The response acceleration for sinusoidal waves of various amplitudes and frequencies and seismic waves were analyzed by performing 1-G shaking table experiments. Fixed foundation, Sliding foundation, and Rocking foundation were evaluated. The results of this study indicated that the Teflon-type seismic foundation isolation system is effective in reducing the acceleration transmitted to the superstructure subject to large input ground motion. Response spectrum of the Rocking and Sliding foundation structures moves to the long period, while that of Fixed foundation moves to short period.

Comparison of Seismic Retrofit Efficiencies of Base Isolation Systems for Existing Bridges

  • 조효남;엄원석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.81-86
    • /
    • 2000
  • In recent modern protective systems have been introduced to reduce the vulnerability of bridges to seismic events. These protective systems include base isolation devices of different types, damping devices and active control devices. The objective of this study is to analytically evaluate the efficiency of a seismic retrofit scheme using base isolation systems, such as lead rubber bearings and sliding isolators. In this study, a triaxial model was used, which is capable of accurately developing the behavior of sliding isolators including the influence of the changing vertical force and velocity on the friction coefficients. Seismic response analyses of the bridge before and after retrofit were carried out by using a three-dimensional nonlinear seismic analysis program, IDARC-BRIDGE. To evaluate the efficiency of a retrofit scheme using triaxial isolators, a comparative study of performances of above two base isolation systems was conducted, and the numerical results show that the triaxial isolation solution can effectively reduce the sheat forces at the piers for the vertical ground motion.

  • PDF

Design of a Seismic Isolation Table for both indoor and outdoor Electrical Communication Equipment (전기통신설비를 위한 옥내외 겸용 면진테이블 설계)

  • Lee, Chun-Se;Ahn, Hyeong-Joon;Lee, Taek-Won;Son, In-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.472-472
    • /
    • 2009
  • The safety of cultural properties, medical treatment and electrical communication equipments in a building was hardly considered against the earthquake induced vibration, while the integrity of the building structure has been taken into account through the resistant earthquake design. This paper presents design of a seismic isolation table for both indoor and outdoor electrical communication equipment. First of all, artificial earthquake waves compatible with floor and ground response spectra for electrical communication equipments are generated using previously recorded seismic waves. Two kinds of one-degree-of-freedom seismic isolation table systems: spring-linear damper and spring-friction damper systems are considered and their responses to artificial earthquake waves are simulated. Design parameter study for two seismic isolation tables are performed through simulations and a seismic isolation table for both indoor and outdoor electrical communication equipment is designed considering the simulation results.

  • PDF

Energy-balance assessment of shape memory alloy-based seismic isolation devices

  • Ozbulut, O.E.;Hurlebaus, S.
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.399-412
    • /
    • 2011
  • This study compares the performance of two smart isolation systems that utilize superelastic shape memory alloys (SMAs) for seismic protection of bridges using energy balance concepts. The first isolation system is a SMA/rubber-based isolation system (SRB-IS) and consists of a laminated rubber bearing that decouples the superstructure from the bridge piers and a SMA device that provides additional energy dissipation and re-centering capacity. The second isolation system, named as superelastic-friction base isolator (S-FBI), combines the superelastic SMAs with a flat steel-Teflon bearing rather than a laminated rubber bearing. Seismic energy equations of a bridge structure with SMA-based isolation systems are established by absolute and relative energy balance formulations. Nonlinear time history analyses are performed in order to assess the effectiveness of the isolation systems and to compare their performance. The program RSPMatch 2005 is employed to generate spectrum compatible ground motions that are used in time history analyses of the isolated bridge. Results indicate that SRB-IS produces higher seismic input energy, recoverable energy and base shears as compared to the S-FBI system. Also, it is shown that combining superelastic SMAs with a sliding bearing rather than rubber bearing significantly reduce the amount of the required SMA material.

Seismic evaluation and retrofitting of reinforced concrete buildings with base isolation systems

  • Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.293-311
    • /
    • 2016
  • A parametric study on the nonlinear seismic response of isolated reinforced concrete structural frame is presented. Three prototype frames designed according to the 1954 Hellenic seismic code, with number of floor ranging from 1 to 3 were considered. These low rise frames are representative of many existing reinforced concrete buildings in Greece. The efficacy of the implementation of both lead rubber bearings (LRB) and friction pendulum isolators (FPI) base isolation systems were examined. The selection of the isolation devices was made according to the ratio $T_{is}/T_{fb}$, where Tis is the period of the base isolation system and $T_{bf}$ is the period of the fixed-base building. The main purpose of this comprehensive study is to investigate the effect of the isolation system period on the seismic response of inadequately designed low rise buildings. Thus, the implementation of isolation systems which correspond to the ratio $T_{is}/T_{fb}$ that values from 3 to 5 is studied. Nonlinear time history analyses were performed to investigate the response of the isolated structures using a set of three natural seismic ground motions. The evaluation of each retrofitting case was made in terms of storey drift and storey shear force while in view of serviceability it was made in terms of storey acceleration. Finally, the maximum developed displacements and the residual displacements of the isolation systems are presented.

Seismic isolation performance sensitivity to potential deviations from design values

  • Alhan, Cenk;Hisman, Kemal
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.293-315
    • /
    • 2016
  • Seismic isolation is often used in protecting mission-critical structures including hospitals, data centers, telecommunication buildings, etc. Such structures typically house vibration-sensitive equipment which has to provide continued service but may fail in case sustained accelerations during earthquakes exceed threshold limit values. Thus, peak floor acceleration is one of the two main parameters that control the design of such structures while the other one is peak base displacement since the overall safety of the structure depends on the safety of the isolation system. And in case peak base displacement exceeds the design base displacement during an earthquake, rupture and/or buckling of isolators as well as bumping against stops around the seismic gap may occur. Therefore, obtaining accurate peak floor accelerations and peak base displacement is vital. However, although nominal design values for isolation system and superstructure parameters are calculated in order to meet target peak design base displacement and peak floor accelerations, their actual values may potentially deviate from these nominal design values. In this study, the sensitivity of the seismic performance of structures equipped with linear and nonlinear seismic isolation systems to the aforementioned potential deviations is assessed in the context of a benchmark shear building under different earthquake records with near-fault and far-fault characteristics. The results put forth the degree of sensitivity of peak top floor acceleration and peak base displacement to superstructure parameters including mass, stiffness, and damping and isolation system parameters including stiffness, damping, yield strength, yield displacement, and post-yield to pre-yield stiffness ratio.

Conceptual Application Schemes of Seismic Isolation Techniques to Hanok (한옥의 면진기법 적용 방안에 대한 개념적 고찰)

  • Park, Bum-Soo;Kim, Yeong-Min;Hur, Moo-Won;Lee, Sang-Hyun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.1
    • /
    • pp.137-146
    • /
    • 2020
  • In this study, various application schemes of seismic isolation system which can be applied to Hanok have been studied by analyzing its structural characteristics under seismic load. Structural stability of Hanok is more required against seismic load as Hanok becomes long-spanned and multi-storied. To meet this goal, it becomes necessary to study more advanced technology such as seismic isolation design as well as seismic control design and seismic resistant design suitable to Hanok. Seismic isolation systems have been successfully applied to RC and steel structures to improve structural performance during earthquakes. Based on these previous study, we proposed four application schemes of seismic isolation design suitable for Hanok and analyzed their structural characteristics and applicability to Hanok in conceptual level based on its structural characteristics. The proposed four schemes are base isolation method, ground isolation method, roof isolation method and intermediate-story isolation method. The applicability of the proposed method was evaluated by performing boundary nonlinear dynamic analysis to the typical Hanok for the two types of isolation method, that is, ground isolation method and roof isolation method, and the results showed that the proposed methods produced good performance enough to be applied to Hanok.