• Title/Summary/Keyword: seismic isolation retrofit

Search Result 17, Processing Time 0.021 seconds

Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS): an engineering solution for practical aseismic isolation with advanced materials

  • Narjabadifam, Peyman;Noori, Mohammad;Cardone, Donatello;Eradat, Rasa;Kiani, Mehrdad
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.89-102
    • /
    • 2020
  • Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS) is proposed as an engineering solution to practically exploit the well-accepted advantages of both sliding isolation and SMA-based recentering. Self-centering capability in SSS is provided by austenitic SMA cables (or wire ropes), recently attracting a lot of interest and attention in earthquake engineering and seismic isolation. The cables are arranged in various novel and conventional configurations to make SSS versatile for aseismic design and retrofit of structures. All the configurations are detailed with thorough technical drawings. It is shown that SSS is applicable without the need for Isolation Units (IUs). IUs, at the same time, are devised for industrialized applications. The proof-of-concept study is carried out through the examination of mechanical behavior in all the alternative configurations. Force-displacement relations are determined. Isolation capabilities are predicted based on the decreases in seismic demands, estimated by the increases in effective periods and equivalent damping ratios. Restoring forces normalized relative to resisting forces are assessed as the criteria for self-centering capabilities. Lengths of SMA cables required in each configuration are calculated to assess the cost and practicality. Practical implementation is realized by setting up a small-scale IU. The effectiveness of SSS under seismic actions is evaluated using an innovative computer model and compared to those of well-known Isolation Systems (ISs) protecting a reference building. Comparisons show that SSS seems to be an effective IS and suitable for earthquake protection of both structural and non-structural elements. Further research aimed at additional validation of the system are outlined.

Comparative study of the seismic response of RC framed buildings retrofitted using modern techniques

  • Mazza, Fabio
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.29-48
    • /
    • 2015
  • The main purpose of this work is to compare different criteria for the seismic strengthening of RC framed buildings in order to find the optimal combinations of these retrofitting techniques. To this end, a numerical investigation is carried out with reference to the town hall of Spilinga (Italy), an RC framed structure with an L-shaped plan built at the beginning of the 1960s. Five structures are considered, derived from the first by incorporating: carbon fibre reinforced polymer (FRP)-wrapping of all columns; base-isolation, with high-damping-laminated-rubber bearings (HDLRBs); added damping, with hysteretic damped braces (HYDBs); FRP-wrapping of the first storey columns combined with base-isolation or added damping. A three-dimensional fibre model of the primary and retrofitted structures is considered; bilinear and trilinear laws idealize, respectively, the behaviour of the HYDB, providing that the buckling be prevented, and the FRP-wrapping, without resistance in compression, while the response of the HDLRB is simulated by using a viscoelastic linear model. The effectiveness of the retrofitting solutions is tested with nonlinear dynamic analyses based on biaxial accelerograms, whose response spectra match those in the Italian seismic code.

Evaluation Test for the Bridges Retrofitted Seismically with LRB (LRB로 내진보강된 교량의 성능검증 실험)

  • Kwahk, Im-Jong;Cho, Chang-Beck;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.109-112
    • /
    • 2006
  • In this study, an approach that installs seismic isolation bearings was proposed for the seismic retrofit of the existing bridges. The method that replaces all existing bearings with seismic isolators was proposed already. However, in this study, we recommend to utilize the existing bearings for the benefit of safety and cost. According to our proposal, the seismic isolators do not support vertical loads but they just function as the period shifter and the horizontal damper. To verify this approach experimentally, the real scale bearings and isolators for the real highway bridges were designed and fabricated. And the responses of this isolated bridges to the assumed earthquakes were determined by the pseudo dynamic test scheme. The test results were also compared to the responses computed by the well known structural analysis software to check the reliability of the test. From the test results, we found that the retrofitted bridges using the proposed method showed stable performances under earthquakes.

  • PDF

Seismic Performance of Reinforced Concrete Frame Retrofitted with Opening-Isolated Type System (개구부 격리형 시스템으로 보강된 철근콘크리트 골조의 내진성능)

  • Park, Wan-Shin;Kim, Sun-Woo;Jung, Hyun-Seok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.137-144
    • /
    • 2020
  • The purpose of this study is to experimentally evaluate the effect of improving seismic performance by applying the details of seismic reinforcement to the reinforced concrete frame with non-seismic details while maintaining the original opening shape. In this study, based on CF specimens with specific seismic details, a total of four full scale specimens were designed and fabricated. The main variables are the width and spacing of steel dampers installed in the upper and lower parts of seismic reinforcement details, and the presence or absence of torsion springs installed in the hinges. As a result of the test, it was evaluated to be helpful for seismic retrofit and opening isolation of steel dampers installed at the upper and lower parts of the seismic reinforcement details and torsion springs installed at the joints. In particular, CFR2S specimens with torsion springs showed the best performance in terms of strength, stiffness and energy dissipation capacity with increasing displacement angle.

Seismic retrofitting of a tower with shear wall in UHPC based dune sand

  • Trabelsi, Abderraouf;Kammoun, Zied;Beddey, Aouicha
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.591-601
    • /
    • 2017
  • To prevent or limit the damage caused by earthquakes on existing buildings, several retrofitting techniques are possible. In this work, an ultra high performance concrete based on sand dune has been formulated for use in the reinforcement of a multifunctional tower in the city of Skikda in Algeria. Tests on the formulated ultra high performance concrete are performed to determine its characteristics. A nonlinear dynamic analysis, based on the "Pushover" method was conducted. The analysis allowed an optimization of the width of reinforced concrete walls used in seismic strengthening. Two types of concrete are studied, the ordinary concrete and the ultra high performance concrete. Both alternatives are compared with the reinforcement with carbon fibers and by base isolation retrofit design.

Structural monitoring and identification of civil infrastructure in the United States

  • Nagarajaiah, Satish;Erazo, Kalil
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.51-69
    • /
    • 2016
  • Monitoring the performance and estimating the remaining useful life of aging civil infrastructure in the United States has been identified as a major objective in the civil engineering community. Structural health monitoring has emerged as a central tool to fulfill this objective. This paper presents a review of the major structural monitoring programs that have been recently implemented in the United States, focusing on the integrity and performance assessment of large-scale structural systems. Applications where response data from a monitoring program have been used to detect and correct structural deficiencies are highlighted. These applications include (but are not limited to): i) Post-earthquake damage assessment of buildings and bridges; ii) Monitoring of cables vibration in cable-stayed bridges; iii) Evaluation of the effectiveness of technologies for retrofit and seismic protection, such as base isolation systems; and iv) Structural damage assessment of bridges after impact loads resulting from ship collisions. These and many other applications show that a structural health monitoring program is a powerful tool for structural damage and condition assessment, that can be used as part of a comprehensive decision-making process about possible actions that can be undertaken in a large-scale civil infrastructure system after potentially damaging events.

Development of High Damping Alloys for Reduction of Noise and Vibration (소음.진동 제어를 위한 방진합금 개발)

  • Baik, Seung-Han;Kim, Jung-Chul;Han, Dong-Woon;Baik, Jin-Hyun;Kim, Tai-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.565-569
    • /
    • 2004
  • Conventional methods for reducing vibration in engineering designs (i.e. by stiffening or detuning) may be undesirable or inadequate in conditions where size or weight must be minimized or where complex vibration spectra exist. Alloys which combine high damping capacity with good mechanical properties can provide attractive technical and economic solutions to problems involving seismic, shock and vibration isolation. To meet these trends, we have developed a new high damping Fe-17%Mn alloys. Also, the alloy has advantages of good mechanical properties and more economical than any other known damping alloys(1/4 times as cost of non-ferrous damping alloy). Thus, the high damping Fe-17%6Mn alloy can be widely applied to household appliances, automobiles, industrial facilities and power plant components with its excellent damping capacity(SDC, 30%) and mechanical property(T.S 700MPa). It is the purpose of this paper to introduce the characterization of the high damping Fe-17%Mn alloy and the results of retrofit several such applications.

  • PDF