• Title/Summary/Keyword: seismic isolated building

Search Result 109, Processing Time 0.022 seconds

Seismic responses of base-isolated buildings: efficacy of equivalent linear modeling under near-fault earthquakes

  • Alhan, Cenk;Ozgur, Murat
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1439-1461
    • /
    • 2015
  • Design criteria, modeling rules, and analysis principles of seismic isolation systems have already found place in important building codes and standards such as the Uniform Building Code and ASCE/SEI 7-05. Although real behaviors of isolation systems composed of high damping or lead rubber bearings are nonlinear, equivalent linear models can be obtained using effective stiffness and damping which makes use of linear seismic analysis methods for seismic-isolated buildings possible. However, equivalent linear modeling and analysis may lead to errors in seismic response terms of multi-story buildings and thus need to be assessed comprehensively. This study investigates the accuracy of equivalent linear modeling via numerical experiments conducted on generic five-story three dimensional seismic-isolated buildings. A wide range of nonlinear isolation systems with different characteristics and their equivalent linear counterparts are subjected to historical earthquakes and isolation system displacements, top floor accelerations, story drifts, base shears, and torsional base moments are compared. Relations between the accuracy of the estimates of peak structural responses from equivalent linear models and typical characteristics of nonlinear isolation systems including effective period, rigid-body mode period, effective viscous damping ratio, and post-yield to pre-yield stiffness ratio are established. Influence of biaxial interaction and plan eccentricity are also examined.

Comparing the dynamic behavior of a hospital-type structure with fixed and isolated base

  • Nasery, Mohammad Manzoor;Ergun, Mustafa;Ates, Sevket;Husem, Metin
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.657-671
    • /
    • 2015
  • The level of ductility is determined by depending on the intended use of the building, the region's seismic characteristics and the type of structural system when buildings are planned by engineers. Major portion of seismic energy is intended to be consumed in the plastic zone in structural systems of high ductility, so the occurrence of damages in load bearing and non-load bearing structural elements is accepted in planning stage under severe earthquakes. However, these damages must be limited among specific values in order not to endanger buildings in terms of the bearing capacity. Isolators placed between the basement and upper structure make buildings behave elastically by reducing the effects of seismic loads and improving seismic performance of building significantly. Thus, damages can be limited among desired values. In this study, the effectiveness of seismic isolation is investigated on both fixed based and seismic isolated models of a hospital building with high ductility level with regard to lateral displacements, internal forces, structural periods and cost of the building. Layered rubber bearings are interposed between the base of the structure and foundation. Earthquake analysis of the building are performed using earthquake records in time domain (Kocaeli, Loma Prieta and Landers). Results obtained from three-dimensional finite element models are presented by graphs and tables in detail. That seismic isolation reduces significantly the destructive effects of earthquakes on structures is seen from the results obtained by seismic analysis.

Seismic Analyses of Soil Pressure against Embedded Mat Foundation and Pile Displacements for a Building in Moderate Seismic Area (중진지역 건축물의 묻힌온통기초에 작용하는 토압과 말 뚝변위에 대한 지진해석)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • Seismic analyses of a pile under a large rigid basement foundation embedded in the homogeneous soil layer were performed practically by a response displacement method assuming a sinusoidal wave form. However, it is hard to take into account the characteristics of a large mat foundation and a heterogeneous soil layer with the response displacement method. The response displacement method is relevant to the 2D problems for longitudinal structures such as tunnel, underground cave structure, etc., but might not be relevant with isolated foundations for building structures. In this study, seismic pile analysis by a pseudo 3D finite element method was carried out to compare numerical results with results of the response displacement method considering 3D characteristics of a foundation-soil system which is important for the building foundation analyses. Study results show that seismic analyses results of a response displacement method are similar to those of a pseudo 3D numerical method for stiff and dense soil layers, but they are too conservative for a soft soil layer inducing large soil pressures on the foundation wall and large pile displacements due to ignored foundation rigidity and resistance.

Performance-based design of seismic isolated buildings considering multiple performance objectives

  • Morgan, Troy A.;Mahin, Stephen A.
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.655-666
    • /
    • 2008
  • In the past 20 years, seismic isolation has see a variety of applications in design of structures to mitigate seismic hazard. In particular, isolation has been seen as a means of achieving enhanced seismic performance objectives, such as those for hospitals, critical emergency response facilities, mass electronic data storage centers, and similar buildings whose functionality following a major seismic event is either critical to the public welfare or the financial solvency of an organization. While achieving these enhanced performance objectives is a natural (and oftentimes requisite) application of seismic isolation, little attention has been given to the extension of current design practice to isolated buildings which may have more conventional performance objectives. The development of a rational design methodology for isolated buildings requires thorough investigation of the behavior of isolated structures subjected to seismic input of various recurrence intervals, and which are designed to remain elastic only under frequent events. This paper summarizes these investigations, and proposed a consistent probabilistic framework within which any combination of performance objectives may be met. Analytical simulations are presented, the results are summarized. The intent of this work is to allow a building owner to make informed decisions regarding tradeoffs between superstructure performance (drifts, accelerations) and isolation system performance. Within this framework, it is possible to realize the benefits of designing isolated buildings for which the design criteria allows consideration of multiple performance goals.

Seismic response characteristics of base-isolated AP1000 nuclear shield building subjected to beyond-design basis earthquake shaking

  • Wang, Dayang;Zhuang, Chuli;Zhang, Yongshan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.170-181
    • /
    • 2018
  • Because of the design and construction requirements, the nuclear structures need to maintain the structural integrity under both design state and extreme earthquake shaking. The base-isolation technology can significantly reduce the damages of structures under extreme earthquake events, and effectively protect the safeties of structures and internal equipment. This study proposes a base-isolation design for the AP1000 nuclear shield building on considering the performance requirements of the seismic isolation systems and devices of shield building. The seismic responses of isolated and nonisolated shield buildings subjected to design basis earthquake (DBE) shaking and beyond-design basis earthquake (BDBE) shaking are analyzed, and three different strategies for controlling the displacements subjected to BDBE shaking are performed. By comparing with nonisolated shield buildings, the floor acceleration spectra of isolated shield buildings, relative displacement, and base shear force are significantly reduced in high-frequency region. The results demonstrate that the base-isolation technology is an effective approach to maintain the structural integrity which subjected to both DBE and BDBE shaking. A displacement control design for isolation layers subjected to BDBE shaking, which adopts fluid dampers for controlling the horizontal displacement of isolation layer is developed. The effectiveness of this simple method is verified through numerical analysis.

Seismic performance of a building base-isolated by TFP susceptible to pound with a surrounding moat wall

  • Movahhed, Ataallah Sadeghi;Zardari, Saeid;Sadoglu, Erol
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.87-100
    • /
    • 2022
  • Limiting the displacement of seismic isolators causes a pounding phenomenon under severe earthquakes. Therefore, the ASCE 7-16 has provided minimum criteria for the design of the isolated building. In this research the seismic response of isolated buildings by Triple Friction Pendulum Isolator (TFPI) under the impact, expected, and unexpected mass eccentricity was evaluated. Also, the effect of different design parameters on the seismic behavior of structural and nonstructural elements was found. For this, a special steel moment frame structure with a surrounding moat wall was designed according to the criteria, by considering different response modification coefficients (RI), and 20% mass eccentricity in one direction. Then, different values of these parameters and the damping of the base isolation were evaluated. The results show that the structural elements have acceptable behavior after impact, but the nonstructural components are placed in a moderate damage range after impact and the used improved methods could not ameliorate the level of damage. The reduction in the RI and the enhancement of the isolator's damping are beneficial up to a certain point for improving the seismic response after impact. The moat wall reduces torque and maximum absolute acceleration (MAA) due to unexpected enhancement of mass eccentricity. However, drifts of some stories increase. Also, the difference between the response of story drift by expected and unexpected mass eccentricity is less. This indicates that the minimum requirement displacement according to ASCE 7-16 criteria lead to acceptable results under the unexpected enhancement of mass eccentricity.

Analyses of Vertical Seismic Responses of Seismically Isolated Nuclear Power Plant Structures Supported by Lead Rubber Bearings (납적층고무받침(LRB)으로 지지된 면진 원전 구조물의 수직방향 지진응답 분석)

  • Cho, Sung Gook;Yun, Sung Min;Kim, Dookie;Hoo, Kee Jeung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.133-143
    • /
    • 2015
  • It is very important to assure the seismic performance of equipment as well as building structures in seismic design of nuclear power plant(NPP). Seismically isolated structures may be reviewed mainly on the horizontal seismic responses. Considering the equipment installed in the NPP, the vertical earthquake responses of the structure also should be reviewed. This study has investigated the vertical seismic demand of seismically isolated structure by lead rubber bearings(LRBs). For the numerical evaluation of seismic demand of the base isolated NPP, the Korean standard nuclear power plant (APR1400) is modeled as 4 different models, which are supported by LRBs to have 4 different horizontal target periods. Two real earthquake records and artificially generated input motions have been used as inputs for earthquake analyses. For the study, the vertical floor response spectra(FRS) were generated at the major points of the structure. As a results, the vertical seismic responses of horizontally isolated structure have largely increased due to flexibility of elastomeric isolator. The vertical stiffness of the bearings are more carefully considered in the seismic design of the base-isolated NPPs which have the various equipment inside.

Seismic Performance Improvement of Base Isolated Buildings using Smart Passive Control System (스마트 수동 제어 시스템을 이용한 면진 건물의 내진 성능 개선)

  • Jung, Hyung-Jo;Jung, Chan-Kuk;Choi, Kang-Min;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.37-46
    • /
    • 2006
  • In this study, the efficacy of the newly developed smart passive control system to improve seismic performance of base isolated building structures is numerically verified. The smart passive control system consists of a magnetorheological (MR) damper and an electromagnetic induction (EMI) part. The damping characteristics of an MR damper can be controlled by the current generated in an EMI part according to the Faraday's law of electromagnetic induction. An EMI part consisting of a permanent magnet and a solenoid coil could substitute a control system including sensors, a controller and an external power supply in a conventional smart control system. The benchmark control problem for a base isolated building presented by the american society of civil engineers is considered for numerical simulation. The control performance of the smart passive control system is compared to that of the conventional smart control system using MR dampers. It is demonstrated from the numerical simulation results that the smart passive control system is useful to improve the seismic performance of base isolated buildings.

Necessity and adequacy of near-source factors for seismically isolated buildings

  • Saifullah, Muhammad Khalid;Alhan, Cenk
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.91-108
    • /
    • 2017
  • Superstructures and isolation systems of seismically isolated buildings located close to active faults may observe increased seismic demands resulting from long-period and high-amplitude velocity and displacement pulses existent in near-fault ground motions as their fundamental periods may be close to or coincident with these near-fault pulse periods. In order to take these effects into account, the 1997 Uniform Building Code (UBC97) has specified near-source factors that scale up the design spectrum depending on the closest distance to the fault, the soil type at the site, and the properties of the seismic source. Although UBC97 has been superseded by the 2015 International Building Code in the U.S.A., UBC97 near-source factors are still frequently referred in the design of seismically isolated buildings around the world. Therefore it is deemed necessary and thus set as the aim of this study to assess the necessity and the adequacy of near-source factors for seismically isolated buildings. Benchmark buildings of different heights with isolation systems of different properties are used in comparing seismic responses obtained via time history analyses using a large number of historical earthquakes with those obtained from spectral analyses using the amplified spectrums established through UBC97 near-source factors. Results show that near-source factors are necessary but inadequate for superstructure responses and somewhat unconservative for base displacement response.

Dynamic Response of Seismically Isolated High-Story Buildings according to Earthquake Records (지진기록 사용에 따른 고층 면진건물의 동적 응답)

  • Lee, Hyun-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.643-651
    • /
    • 2008
  • The purpose of this study is to evaluate seismic capacity of seismically isolated building according to the earthquake motion record selection method. To analyze the seismic behavior, 20-story building is designed, which has base isolation system. The using earthquake motion record were selected by two categories. The one is a proposed earthquake record according to soil type and response spectrum shape, and the other is a well known earthquake events such as El Centro (1940). The time history analysis results of base isolation buildings be induced difference results according to each ground motion records. Therefore detailed guidelines for the ground motion records selection method must be prepared. And the response of isolation story displacement and shear force show good seismic performance in consideration of the proposed earthquake records.