• Title/Summary/Keyword: seismic intensity method

Search Result 101, Processing Time 0.027 seconds

Displacement-based design approach for highway bridges with SMA isolators

  • Liu, Jin-Long;Zhu, Songye;Xu, You-Lin;Zhang, Yunfeng
    • Smart Structures and Systems
    • /
    • v.8 no.2
    • /
    • pp.173-190
    • /
    • 2011
  • As a practical and effective seismic resisting technology, the base isolation system has seen extensive applications in buildings and bridges. However, a few problems associated with conventional lead-rubber bearings have been identified after historical strong earthquakes, e.g., excessive permanent deformations of bearings and potential unseating of bridge decks. Recently the applications of shape memory alloys (SMA) have received growing interest in the area of seismic response mitigation. As a result, a variety of SMA-based base isolators have been developed. These novel isolators often lead to minimal permanent deformations due to the self-centering feature of SMA materials. However, a rational design approach is still missing because of the fact that conventional design method cannot be directly applied to these novel devices. In light of this limitation, a displacement-based design approach for highway bridges with SMA isolators is proposed in this paper. Nonlinear response spectra, derived from typical hysteretic models for SMA, are employed in the design procedure. SMA isolators and bridge piers are designed according to the prescribed performance objectives. A prototype reinforced concrete (RC) highway bridge is designed using the proposed design approach. Nonlinear dynamic analyses for different seismic intensity levels are carried out using a computer program called "OpenSees". The efficacy of the displacement-based design approach is validated by numerical simulations. Results indicate that a properly designed RC highway bridge with novel SMA isolators may achieve minor damage and minimal residual deformations under frequent and rare earthquakes. Nonlinear static analysis is also carried out to investigate the failure mechanism and the self-centering ability of the designed highway bridge.

Collapse failure mechanism of subway station under mainshock-aftershocks in the soft area

  • Zhen-Dong Cui;Wen-Xiang Yan;Su-Yang Wang
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.303-316
    • /
    • 2024
  • Seismic records are composed of mainshock and a series of aftershocks which often result in the incremental damage to underground structures and bring great challenges to the rescue of post-disaster and the repair of post-earthquake. In this paper, the repetition method was used to construct the mainshock-aftershocks sequence which was used as the input ground motion for the analysis of dynamic time history. Based on the Daikai station, the two-dimensional finite element model of soil-station was established to explore the failure process of station under different seismic precautionary intensities, and the concept of incremental damage of station was introduced to quantitatively analyze the damage condition of structure under the action of mainshock and two aftershocks. An arc rubber bearing was proposed for the shock absorption. With the arc rubber bearing, the mode of the traditional column end connection was changed from "fixed connection" to "hinged joint", and the ductility of the structure was significantly improved. The results show that the damage condition of the subway station is closely related to the magnitude of the mainshock. When the magnitude of the mainshock is low, the incremental damage to the structure caused by the subsequent aftershocks is little. When the magnitude of the mainshock is high, the subsequent aftershocks will cause serious incremental damage to the structure, and may even lead to the collapse of the station. The arc rubber bearing can reduce the damage to the station. The results can offer a reference for the seismic design of subway stations under the action of mainshock-aftershocks.

Damage detection and localization on a benchmark cable-stayed bridge

  • Domaneschi, Marco;Limongelli, Maria Pina;Martinelli, Luca
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1113-1126
    • /
    • 2015
  • A damage localization algorithm based on Operational Deformed Shapes and known as Interpolation Damage Detection Method, is herein applied to the finite element model of a cable stayed bridge for detecting and localizing damages in the stays and the supporting steel beams under the bridge deck. Frequency Response Functions have been calculated basing on the responses of the bridge model to low intensity seismic excitations and used to recover the Operational Deformed Shapes both in the transversal and in the vertical direction. The analyses have been carried in the undamaged configuration and repeated in several different damaged configurations. Results show that the method is able to detect the damage and its correct location, provided an accurate estimation of the Operational Deformed Shapes is available. Furthermore, the damage detection algorithm results effective also when damages coexist at the same time at several location of the cable-stayed bridge members.

The Dynamic Analysis of Cable Dome Structures (케이블 돔의 구조물의 동적 비선형 해석)

  • Seo, Jun-Ho;Han, Sang-Eul;Lee, Sang-Ju
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.113-122
    • /
    • 2004
  • Cable domes deform very largely because of the characteristics of flexible hybrid system and pre-tension, and include geometrical non-linearity in those structural behavior. Especially wind load is more dominant than seismic load, because cable domes are flexible structures whose bending stiffness is very small and self-weight is very light. Therefore, in this paper, the Modified Stiffly Stable Method is applied to analyze the nonlinear dynamic behavior of cable domes and compared these results with ones of the $Newmark-{\beta}$ Method which is generally used. The Seoul Olympic Gymnastic Arena is taken as an numerical example and three kinds of models with giving each different intensity of pre-tension are selected. And dynamic nonlinear behavior of cable domes are analyzed by artificial spectrum of wind velocity wave which is similar to actual wind loads.

  • PDF

Pseudostatic Analysis of Single Column/Shafts Considering Nonlinear Soil Behavior (지반의 비선형거동을 고려한 단일현장타설말뚝의 의사정적해석)

  • Lee, Joon-Kyu;Kim, Byung-Chul;Jeong, Sang-Seom;Song, Sung-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.31-40
    • /
    • 2008
  • This study presents the assessment of pseudostatic approach for obtaining the internal response of Single Column/Shaft subjected to earthquake loading. In numerical procedure, various lateral load transfer characteristics (p-y curve and Bi-linear curve) were used to model the nonlinear behavior of soil reactions including soil-pile interaction. The analysis using nonlinear soil model could estimate the seismic performance of soil-pile system, despite its relative simplicity. It was found that lateral behavior of single column/shaft obtained from the response displacement method was larger than those by seismic intensity method. To investigate the effects of soil-pile rigidity and pile head condition on the internal pile response, parametric studies were carried out for various soil models. The results from numerical analysis showed that lateral deflection was decreased with fixed condition of pile head and decreasing the soil-pile rigidity. The seismic analysis using Bi-linear model of JRA could reasonably predict the lateral behavior of Single Column/Shaft.

Damage Estimation Based on Spatial Variability of Seismic Parameters Using GIS Kriging (GIS Kriging을 이용하여 공간적으로 분포하는 지진매개변수의 분석과 손상 평가)

  • Jeon Sang-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.33-44
    • /
    • 2004
  • This paper is focused on the spatial variability of measured strong motion data during earthquake and its relationship with the performance of water distribution pipelines and residential buildings. Analyses of strong motion and the correlations of peak ground velocity (PGV) and pipeline and building damage were conducted with a very large geographical information system (GIS) database including the relationship of time and earthquake intensity and the measured location, and Kriging spatial statistics. Kriging was used to develop regressions of pipeline repair rate (RR) and residential building damage ratio (DR) associated with $90\%$ confidence peak ground velocity (PGV). Such regressions using Kriging provide an explicit means of characterizing the uncertainty embodied in the strong motion data compared with other spacial statistics such as inverse distance method.

Geometrically Nonlinear Dynamic Analysis of Cable Domes (케이블 돔의 기하학적 비선형 동적해석)

  • 한상을;서준호;김종범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.61-68
    • /
    • 2003
  • Cable domes deform very largely because of the characteristics of flexible hybrid system and pre-tension, and include geometrical non-linearity in those structural behavior. Especially wind load is more dominant than seismic loads, because cable domes are flexible structures whose stiffness is very small and self-weight is very light. Therefore, in this paper, Modified Stiffly Stable Method is applied to analyze the nonlinear dynamic behavior of cable domes and compared these results with ones of Newmark-β Method which is generally used. The Seoul Olympic Gymnastic Arena is taken as an numerical example and three kinds of models with giving each different intensity of pre-tension are selected. And dynamic nonlinear behavior of cable domes are analyzed by artificial spectrum of wind velocity wave which is similar to actual wind loads.

  • PDF

Seismic Performance Evaluation of R/C Frame Apartment Strengthened with Kagome Truss Damper External Connection Method by Pseudo Dynamic Test (유사동적실험에 의한 외부접합형 카고메 트러스 제진장치가 설치된 RC 라멘조 공동주택의 내진성능 평가)

  • Heur, Moo-Won;Chun, Young-Soo;Hwang, Jae-Seung;Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.23-34
    • /
    • 2015
  • Recently a new damper system with Kogome truss structure was developed and its mechanical properties were verified based on the laboratory test. This paper presents a Kagome truss damper external connection method for seismic strengthening of RC frame structural system. The Kagome external connection method, proposed in this study, consisted of building structure, Kagome damper and support system. The method is capable of reducing earthquake energy on the basis of the dynamic interaction between external support and building structures using Kagome damper. The pseudo-dynamic test, designed using a existing RC frame apartment for pilot application of LH corporation, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and response ductility. Test results revealed that the proposed Kagome damper method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

District-Level Seismic Vulnerability Rating and Risk Level Based-Density Analysis of Buildings through Comparative Analysis of Machine Learning and Statistical Analysis Techniques in Seoul (머신러닝과 통계분석 기법의 비교분석을 통한 건물에 대한 서울시 구별 지진취약도 등급화 및 위험건물 밀도분석)

  • Sang-Bin Kim;Seong H. Kim;Dae-Hyeon Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.7
    • /
    • pp.29-39
    • /
    • 2023
  • In the recent period, there have been numerous earthquakes both domestically and internationally, and buildings in South Korea are particularly vulnerable to seismic design and earthquake damage. Therefore, the objective of this study is to discover an effective method for assessing the seismic vulnerability of buildings and conducting a density analysis of high-risk structures. The aim is to model this approach and validate it using data from pilot area(Seoul). To achieve this, two modeling techniques were employed, of which the predictive accuracy of the statistical analysis technique was 87%. Among the machine learning techniques, Random Forest Model exhibited the highest predictive accuracy, and the accuracy of the model on the Test Set was determined to be 97.1%. As a result of the analysis, the district rating revealed that Gwangjin-gu and Songpa-gu were relatively at higher risk, and the density analysis of at-risk buildings predicted that Seocho-gu, Gwanak-gu, and Gangseo-gu were relatively at higher risk. Finally, the result of the statistical analysis technique was predicted as more dangerous than those of the machine learning technique. However, considering that about 18.9% of the buildings in Seoul are designed to withstand the Seismic intensity of 6.5 (MMI), which is the standard for seismic-resistant design in South Korea, the result of the machine learning technique was predicted to be more accurate. The current research is limited in that it only considers buildings without taking into account factors such as population density, police stations, and fire stations. Considering these limitations in future studies would lead to more comprehensive and valuable research.

Seismic fragility evaluation of arch concrete dams through nonlinear incremental analysis using smeared crack model

  • Moradloo, Javad;Naserasadi, Kiarash;Zamani, Habib
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.747-760
    • /
    • 2018
  • In the present study, a methodology for developing fragilities of arch concrete dams to assess their performance against seismic hazards is introduced. Firstly, the probability risk and fragility curves are presented, followed by implementation and representation of the way this method is used. Amirkabir arch concrete dam was subjected to non-linear dynamic analyses. A modified three dimensional rotating smeared crack model was used to take the nonlinear behavior of mass concrete into account. The proposed model considers major characteristics of mass concrete. These characteristics are pre-softening behavior, softening initiation criteria, fracture energy conservation, suitable damping mechanism and strain rate effect. In the present analysis, complete fluid-structure interaction is included to account for appropriate fluid compressibility and absorptive reservoir boundary conditions. In this study, the Amirkabir arch concrete dam is subjected to a set of 8 three-component earthquakes each scaled to 10 increasing intensity levels. Using proposed nonlinear smeared crack model, nonlinear analysis is performed where the structure is subjected to a large set of scaled and un-scaled ground motions and the maximum responses are extracted for each one and plotted. Based on the results, fragility curves were plotted according to various and possible damages indexes. Discrete damage probabilities were calculated using statistical methods for each considered performance level and incremental nonlinear analysis. Then, fragility curves were constructed based on the lognormal distribution assumption. Two damage indexes were introduced and compared to one another. The results indicate that the dam has a proper stability under earthquake conditions at MCE level. Moreover, displacement damages index is more conservative and impractical in the fragility analysis than tensional damage index.