• Title/Summary/Keyword: seismic intensity method

Search Result 100, Processing Time 0.027 seconds

Seismic investigation of pushover methods for concrete piers of curved bridges in plan

  • Ahmad, Hamid Reza;Namdari, Nariman;Cao, Maosen;Bayat, Mahmoud
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The use of non-linear analysis of structures in a functional way for evaluating the structural seismic behavior has attracted the attention of the engineering community in recent years. The most commonly used functional method for analysis is a non-linear static method known as the "pushover method". In this study, for the first time, a cyclic pushover analysis with different loading protocols was used for seismic investigation of curved bridges. The finite element model of 8-span curved bridges in plan created by the ZEUS-NL software was used for evaluating different pushover methods. In order to identify the optimal loading protocol for use in astatic non-linear cyclic analysis of curved bridges, four loading protocols (suggested by valid references) were used. Along with cyclic analysis, conventional analysis as well as adaptive pushover analysis, with proven capabilities in seismic evaluation of buildings and bridges, have been studied. The non-linear incremental dynamic analysis (IDA) method has been used to examine and compare the results of pushover analyses. To conduct IDA, the time history of 20 far-field earthquake records was used and the 50% fractile values of the demand given the ground motion intensity were computed. After analysis, the base shear vs displacement at the top of the piers were drawn. Obtained graphs represented the ability of a cyclic pushover analysis to estimate seismic capacity of the concrete piers of curved bridges. Based on results, the cyclic pushover method with ISO loading protocol provided better results for evaluating the seismic investigation of concrete piers of curved bridges in plan.

Seismic Performance Evaluation of Medium-and Low-rise R/C Buildings Strengthened with RCSF External Connection Method by Pseudo Dynamic Test (유사동적실험에 의한 RCSF 외부접합공법으로 내진보강 된 중·저층 철근콘크리트 건물의 내진성능 평가)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • In this study, a new RCSF (Reinforced Concrete Steel Frame) external connection method is proposed for seismic strengthening of medium-and low-rise reinforced concrete buildings. The RCSF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside structures. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and ductility. Test results revealed that the proposed RCSF strengthening method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Evaluation of genetic algorithms for the optimum distribution of viscous dampers in steel frames under strong earthquakes

  • Huang, Xiameng
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.215-227
    • /
    • 2018
  • Supplemental passive control devices are widely considered as an important tool to mitigate the dynamic response of a building under seismic excitation. Nevertheless, a systematic method for strategically placing dampers in the buildings is not prescribed in building codes and guidelines. Many deterministic and stochastic methods have been proposed by previous researchers to investigate the optimum distribution of the viscous dampers in the steel frames. However, the seismic performances of the retrofitted buildings that are under large earthquake intensity levels or near collapse state have not been evaluated by any seismic research. Recent years, an increasing number of studies utilize genetic algorithms (GA) to explore the complex engineering optimization problems. GA interfaced with nonlinear response history (NRH) analysis is considered as one of the most powerful and popular stochastic methods to deal with the nonlinear optimization problem of damper distribution. In this paper, the effectiveness and the efficiency of GA on optimizing damper distribution are first evaluated by strong ground motions associated with the collapse failure. A practical optimization framework using GA and NRH analysis is proposed for optimizing the distribution of the fluid viscous dampers within the moment resisting frames (MRF) regarding the improvements of large drifts under intensive seismic context. Both a 10-storey and a 20-storey building are involved to explore higher mode effect. A far-fault and a near-fault earthquake environment are also considered for the frames under different seismic intensity levels. To evaluate the improvements obtained from the GA optimization regarding the collapse performance of the buildings, Incremental Dynamic Analysis (IDA) is conducted and comparisons are made between the GA damper distribution and stiffness proportional damping distribution on the collapse probability of the retrofitted frames.

Development of Seismic Monitoring System for Natural Gas Governor Station and It's Field Application to Minimize Earthquake Damage (지진 피해 최소화를 위한 지진 감지 시스템 개발 및 현장적용 연구)

  • Yoo H.R.;Park S.S.;Park D.J.;Koo S.J.;Cho S.H.;Rho Y.W.
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.19-25
    • /
    • 2000
  • In order to prevent secondary disaster such as gas explosion which comes after a devastating magnitude earthquake, the seismic monitoring and transmission system for natural gas governor station was developed. To measure ground motions precisely and operate the seismic monitoring system efficiently, the position and method of accelerometer installation were recommended by the analysis of ground noise patterns of governor station. For making a decision on prompt shut-off of gas supplies in the event of a great earthquake, the real-time calculation algorithm of PGA(Peak Ground Acceleration) and SI(Spectrum Intensity) were developed and it has been implemented in the seismic monitoring and transmission system.

  • PDF

Assessment of effect of material properties on seismic response of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.601-619
    • /
    • 2017
  • Cantilever retaining wall movements generally depend on the intensity and duration of ground motion, the response of the soil underlying the wall, the response of the backfill, the structural rigidity, and soil-structure interaction (SSI). This paper investigates the effect of material properties on seismic response of backfill-cantilever retaining wall-soil/foundation interaction system considering SSI. The material properties varied include the modulus of elasticity, Poisson's ratio, and mass density of the wall material. A series of nonlinear time history analyses with variation of material properties of the cantilever retaining wall are carried out by using the suggested finite element model (FEM). The backfill and foundation soil are modelled as an elastoplastic medium obeying the Drucker-Prager yield criterion, and the backfill-wall interface behavior is taken into consideration by using interface elements between the wall and soil to allow for de-bonding. The viscous boundary model is used in three dimensions to consider radiational effect of the seismic waves through the soil medium. In the seismic analyses, North-South component of the ground motion recorded during August 17, 1999 Kocaeli Earthquake in Yarimca station is used. Dynamic equations of motions are solved by using Newmark's direct step-by-step integration method. The response quantities incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that while the modulus of elasticity has a considerable effect on seismic behavior of cantilever retaining wall, the Poisson's ratio and mass density of the wall material have negligible effects on seismic response.

The capacity loss of a RCC building under mainshock-aftershock seismic sequences

  • Zhai, Chang-Hai;Zheng, Zhi;Li, Shuang;Pan, Xiaolan
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.295-306
    • /
    • 2018
  • Reinforced concrete containment (RCC) building has long been considered as the last barrier for keeping the radiation from leaking into the environment. It is important to quantify the performance of these structures and facilities considering extreme conditions. However, the preceding research on evaluating nuclear power plant (NPP) structures, particularly considering mainshock-aftershock seismic sequences, is deficient. Therefore, this manuscript serves to investigate the seismic fragility of a typical RCC building subjected to mainshock-aftershock seismic sequences. The implementation of the fragility assessment has been performed based on the incremental dynamic analysis (IDA) method. A lumped mass RCC model considering the tri-linear skeleton curve and the maximum point-oriented hysteretic rule is employed for IDA analyses. The results indicate that the seismic capacity of the RCC building would be overestimated without taking into account the mainshock-aftershock effects. It is also found that the seismic capacity of the RCC building decreases with the increase of the relative intensity of aftershock ground motions to mainshock ground motions. In addition, the effects of artificial mainshock-aftershock ground motions generated from the repeated and randomized approaches and the polarity of the aftershock with respect to the mainshock on the evaluation of the RCC are also researched, respectively.

Probabilistic seismic performance evaluation of non-seismic RC frame buildings

  • Maniyar, M.M.;Khare, R.K.;Dhakal, R.P.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.725-745
    • /
    • 2009
  • In this paper, probabilistic seismic performance assessment of a typical non-seismic RC frame building representative of a large inventory of existing buildings in developing countries is conducted. Nonlinear time-history analyses of the sample building are performed with 20 large-magnitude medium distance ground motions scaled to different levels of intensity represented by peak ground acceleration and 5% damped elastic spectral acceleration at the first mode period of the building. The hysteretic model used in the analyses accommodates stiffness degradation, ductility-based strength decay, hysteretic energy-based strength decay and pinching due to gap opening and closing. The maximum inter story drift ratios obtained from the time-history analyses are plotted against the ground motion intensities. A method is defined for obtaining the yielding and collapse capacity of the analyzed structure using these curves. The fragility curves for yielding and collapse damage levels are developed by statistically interpreting the results of the time-history analyses. Hazard-survival curves are generated by changing the horizontal axis of the fragility curves from ground motion intensities to their annual probability of exceedance using the log-log linear ground motion hazard model. The results express at a glance the probabilities of yielding and collapse against various levels of ground motion intensities.

Surrounding rock pressure of shallow-buried bilateral bias tunnels under earthquake

  • Liu, Xin-Rong;Li, Dong-Liang;Wang, Jun-Bao;Wang, Zhen
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.427-445
    • /
    • 2015
  • By means of finite element numerical simulation and pseudo-static method, the shallow-buried bilateral bias twin-tube tunnel subject to horizontal and vertical seismic forces are researched. The research includes rupture angles, the failure mode of the tunnel and the distribution of surrounding rock relaxation pressure. And the analytical solution for surrounding rock relaxation pressure is derived. For such tunnels, their surrounding rock has sliding rupture planes that generally follow a "W" shape. The failure area is determined by the rupture angles. Research shows that for shallow-buried bilateral bias twin-tube tunnel under the action of seismic force, the load effect on the tunnel structure shall be studied based on the relaxation pressure induced by surrounding rock failure. The rupture angles between the left tube and the right tube are independent of the surface slope. For tunnels with surrounding rock of Grade IV, V and VI, which is of poor quality, the recommended reinforcement range for the rupture angles is provided when the seismic fortification intensity is VI, VII, VIII and IX respectively. This study is expected to provide theoretical support regarding the ground reinforcement range for the shallow-buried bilateral bias twin-tube tunnel under seismic force.

Seismic vulnerability of old confined masonry buildings in Osijek, Croatia

  • Hadzima-Nyarko, Marijana;Pavica, Gordana;Lesic, Marija
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.629-648
    • /
    • 2016
  • This paper deals with 111 buildings built between 1962 and 1987, from various parts of the city of Osijek, for which, through the collection of documentation, a database is created. The aim of this paper is to provide the first steps in assessing seismic risk in Osijek applying method based on vulnerability index. This index uses collected information of parameters of the building: the structural system, the construction year, plan, the height, i.e., the number of stories, the type of foundation, the structural and non-structural elements, the type and the quality of main construction material, the position in the block and built-up area. According to this method defining five damage states, the action is expressed in terms of the macroseismic intensity and the seismic quality of the buildings by means of a vulnerability index. The value of the vulnerability index can be changed depending on the structural systems, quality of construction, etc., by introducing behavior and regional modifiers based on expert judgments. Since there is no available data of damaged buildings under earthquake loading in our country, we will propose behavior modifiers based on values suggested by earlier works and on judgment based on available project documentation of the considered buildings. Depending on the proposed modifiers, the seismic vulnerability of existing buildings in the city of Osijek will be assessed. The resulting vulnerability of the considered residential buildings provides necessary insight for emergency planning and for identification of critical objects vulnerable to seismic loading.

Study on seismic performance of shaking table model of full light-weight concrete utility tunnel

  • Yanmin Yang;Qi Yuan;Yongqing Li;Jingyu Li;Yuan Gao;Yuzhe Zou
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.15-26
    • /
    • 2023
  • In order to study the anti-seismic performance of full light-weight concrete utility tunnel, EL Centro seismic waves were input, and the seismic simulation shaking table test was carried out on the four utility tunnel models. The dynamic characteristics and acceleration response of the system consisting of the utility tunnel structure and the soil, and the interlayer displacement response of the structure were analyzed. The influence law of different construction methods, haunch heights and concrete types on the dynamic response of the utility tunnel structure was studied. And the experimental results were compared with the finite element calculation results. The results indicated that with the increase of seismic wave intensity, the natural frequency of the utility tunnel structure system decreased and the damping ratio increased. The assembling composite construction method could be equivalent to replace the integral cast-in-place construction method. The haunch height of the assembling composite full light-weight concrete utility tunnel was increased from 30 mm to 50 mm to enhance the anti-seismic performance during large earthquakes. The anti-seismic performance of the full light-weight concrete utility tunnel was better than that of the ordinary concrete utility tunnel. The peak acceleration of the structure was reduced by 21.8% and the interlayer displacement was reduced by 45.8% by using full light-weight concrete. The finite element simulation results were in good agreement with the experimental results, which could provide reference for practical engineering design and application.