• Title/Summary/Keyword: seismic intensity method

Search Result 100, Processing Time 0.023 seconds

Slope Stability Analysis Using Modified Seismic Intensity Method During Earthquake (수정진도법에 의한 지진시의 사면안정해석에 관하여)

  • 오병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.124-131
    • /
    • 2000
  • Numerical analysis of slop stability is carried out using seismic intensity, modified seismic intensity, and response seismic coefficient methods. It is found by comparing each of method that minimum safety factor precedes the required safety factor. It is also proved during analysis that most conservative method is the earthquake response analysis method, next is the response seismic coefficient method, and last one is the seismic intensity method. Usually, seismic intensity method is applied in analysis of slop stability. However, in view of safety factor, modified seismic intensity method is more conservative than seismic intensity method. Also modified seismic intensity method is appropriate when height of structure analyzed is high enough.

  • PDF

Slope Stability Analysis of Filldams by Modified Seismic Intensity Method (수정진도법에 의한 댐사면 안정해석)

  • 신동훈;이종욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.223-228
    • /
    • 2000
  • The current slope stability analysis of a filldam is based on the limit equilibrium method, and in calculation of safety factor during earthquake, adopts the seismic intensity method in which it considers a uniform seismic force from dam foundation to crest. However the observed behaviour of filldam during earthquake shows some different behaviour in that at the crest the measured acceleration is usually several times the ground acceleration. In this study, slope stability calculations of a filldam are provided based on the modified seismic intensity method, which can take into account the amplification phenomena of acceleration in the upper part of dam. And also the results of calculations are compared with that of current seismic intensity method.

  • PDF

Estimation of seismicity parameters of the seismic zones of the Korean Peninsula using incomplete and complete data files (불완전한 자료 및 완전한 자료 목록을 이용한 한반도 지진구들의 지진활동 매개변수 평가)

  • 이기화
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.23-30
    • /
    • 1998
  • An estimation of seismic risk parameters by seismic zones of the Korea Peninsula in order to calculate the seismic hazard values using these was erformed. Seven seismic source zones were selected in consideration of seismicity and geology of Korean Peninsula. The seismicity parameters that should be estimated are maximum intensity, activity rate and b value in the Gutenberg - Richter relation. For computation of these parameters, least square method or maximum likelihood method is applied to the earthquake data in two ways; the one for the data without maximum intensity and the other with maximum intensity. Earthquake data since Choseon Dynasty is regarded as complete and estimation of parameters was made for these data using above two ways. And recently, a new method is published that estimate the seismicity parameters using mixed data containing large historical events and recent complete observations. Therefore, this method is applied to the whole earthquake data of the Korean Peninsula. It turns out that the b value computed considering maximum intensity is slightly lower than that computed considering without maximum intensity, and it becomes still lower when the incomplete data prior to Choseon Dynasty is used. In the case of the activity rates, the values obtained without maximum intensity and that with maximum intensity are similar, though they are lower when the incomplete data is used. The values of maximum intensities are usually lower when considering incomplete data. In the seismic source zone including the Yangsan Fault zone, however, the values are higher when considering the incomplete data.

  • PDF

Bayesian approach for the accuracy evaluating of the seismic demand estimation of SMRF

  • Ayoub Mehri Dehno;Hasan Aghabarati;Mehdi Mahdavi Adeli
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.117-130
    • /
    • 2024
  • Probabilistic model of seismic demand is the main tool used for seismic demand estimation, which is a fundamental component of the new performance-based design method. This model seeks to mathematically relate the seismic demand parameter and the ground motion intensity measure. This study is intended to use Bayesian analysis to evaluate the accuracy of the seismic demand estimation of Steel moment resisting frames (SMRFs) through a completely Bayesian method in statistical calculations. In this study, two types of intensity measures (earthquake intensity-related indices such as magnitude and distance and intensity indices related to ground motion and spectral response including peak ground acceleration (PGA) and spectral acceleration (SA)) have been used to form the models. In addition, an extensive database consisting of sixty accelerograms was used for time-series analysis, and the target structures included five SMRFs of three, six, nine, twelve and fifteen stories. The results of this study showed that for low-rise frames, first mode spectral acceleration index is sufficient to accurately estimate demand. However, for high-rise frames, two parameters should be used to increase the accuracy. In addition, adding the product of the square of earthquake magnitude multiplied by distance to the model can significantly increase the accuracy of seismic demand estimation.

Method for soil-structure dynamic interaction analysis(I) (지반-구조물의 동적 상호작용 해석법(I))

  • 황성춘
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.144-151
    • /
    • 2001
  • The development history of seismic design and analysis methods considering seismic force in soil-structure dynamic interaction are presented. Determination of seismic intensity in static analysis of both seismic and modifided seismic methods is discussed and preferable method in future seismic design is proposed.

  • PDF

Study of Seismic Resistance Performance Evaluation Method for Existing Mid-Low Story RC Structure Buildings by Applying Fuzzy Theory (퍼지이론을 적용한 기존 중저층 철근콘크리트 건축물의 내진성능평가기법 연구)

  • Kim, Dong-Hee;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.2
    • /
    • pp.53-62
    • /
    • 2017
  • This study aims to establish a seismic resistance performance evaluation method that makes sure to secure the seismic resistance performance of the existing mid-low story reinforced concrete structures. This study focuses on the development of the seismic resistance performance evaluation method for the overall seismic resistance performance evaluation on the buildings by applying fuzzy theory. This seismic resistance performance evaluation method considers the mutual relations among the type of force, the type of member, the type of story, and the states of deterioration of the buildings. The total seismic resistance performance index from this method was calculated by the intensity weight of each evaluation item, fuzzy measure, fuzzy integration. Moreover, the evaluation methodology was established in this study to identify the performance level of the Immediate Occupancy, Life Safe, Collapse Prevention by applying the fuzzy theory.

Seismic reliability analysis of structures based on cumulative damage failure mechanism

  • Liu, Qiang;Wang, Miaofang
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.519-526
    • /
    • 2020
  • Non-stationary random seismic response and reliability of multi-degree of freedom hysteretic structure system are studied based on the cumulative damage failure mechanism. First, dynamic Eqs. of multi-degree of freedom hysteretic structure system under earthquake action are established. Secondly, the random seismic response of a multi-degree freedom hysteretic structure system is investigated by the combination of virtual excitation and precise integration. Finally, according to the damage state level of structural, the different damage state probability of high-rise frame structure is calculated based on the boundary value of the cumulative damage index in the seismic intensity earthquake area. The results show that under the same earthquake intensity and the same floor quality and stiffness, the lower the floor is, the greater the damage probability of the building structure is; if the structural floor stiffness changes abruptly, the weak layer will be formed, and the cumulative damage probability will be the largest, and the reliability index will be relatively small. Meanwhile, with the increase of fortification intensity, the reliability of three-level structure fortification is also significantly reduced. This method can solve the problem of non-stationary random seismic response and reliability of high-rise buildings, and it has high efficiency and practicability. It is instructive for structural performance design and estimating the age of the structure.

Sensitivity analysis of probabilistic seismic behaviour of wood frame buildings

  • Gu, Jianzhong
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.109-127
    • /
    • 2016
  • This paper examines the contribution of three sources of uncertainties to probabilistic seismic behaviour of wood frame buildings, including ground motions, intensity and seismic mass. This sensitivity analysis is performed using three methods, including the traditional method based on the conditional distributions of ground motions at given intensity measures, a method using the summation of conditional distributions at given ground motion records, and the Monte Carlo simulation. FEMA P-695 ground motions and its scaling methods are used in the analysis. Two archetype buildings are used in the sensitivity analysis, including a two-storey building and a four-storey building. The results of these analyses indicate that using data-fitting techniques to obtain probability distributions may cause some errors. Linear interpolation combined with data-fitting technique may be employed to improve the accuracy of the calculated exceeding probability. The procedures can be used to quantify the risk of wood frame buildings in seismic events and to calibrate seismic design provisions towards design code improvement.

Empirical seismic fragility rapid prediction probability model of regional group reinforced concrete girder bridges

  • Li, Si-Qi;Chen, Yong-Sheng;Liu, Hong-Bo;Du, Ke
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.609-623
    • /
    • 2022
  • To study the empirical seismic fragility of a reinforced concrete girder bridge, based on the theory of numerical analysis and probability modelling, a regression fragility method of a rapid fragility prediction model (Gaussian first-order regression probability model) considering empirical seismic damage is proposed. A total of 1,069 reinforced concrete girder bridges of 22 highways were used to verify the model, and the vulnerability function, plane, surface and curve model of reinforced concrete girder bridges (simple supported girder bridges and continuous girder bridges) considering the number of samples in multiple intensity regions were established. The new empirical seismic damage probability matrix and curve models of observation frequency and damage exceeding probability are developed in multiple intensity regions. A comparative vulnerability analysis between simple supported girder bridges and continuous girder bridges is provided. Depending on the theory of the regional mean seismic damage index matrix model, the empirical seismic damage prediction probability matrix is embedded in the multidimensional mean seismic damage index matrix model, and the regional rapid prediction matrix and curve of reinforced concrete girder bridges, simple supported girder bridges and continuous girder bridges in multiple intensity regions based on mean seismic damage index parameters are developed. The established multidimensional group bridge vulnerability model can be used to quantify and predict the fragility of bridges in multiple intensity regions and the fragility assessment of regional group reinforced concrete girder bridges in the future.

Simulation based improved seismic fragility analysis of structures

  • Ghosh, Shyamal;Chakraborty, Subrata
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.569-581
    • /
    • 2017
  • The Monte Carlo Simulation (MCS) based seismic fragility analysis (SFA) approach allows defining more realistic relationship between failure probability and seismic intensity. However, the approach requires simulating large number of nonlinear dynamic analyses of structure for reliable estimate of fragility. It makes the approach computationally challenging. The response surface method (RSM) based metamodeling approach which replaces computationally involve complex mechanical model of a structure is found to be a viable alternative in this regard. An adaptive moving least squares method (MLSM) based RSM in the MCS framework is explored in the present study for efficient SFA of existing structures. In doing so, the repetition of seismic intensity for complete generation of fragility curve is avoided by including this as one of the predictors in the response estimate model. The proposed procedure is elucidated by considering a non-linear SDOF system and an existing reinforced concrete frame considered to be located in the Guwahati City of the Northeast region of India. The fragility results are obtained by the usual least squares based and the proposed MLSM based RSM and compared with that of obtained by the direct MCS technique to study the effectiveness of the proposed approach.