• Title/Summary/Keyword: seismic inelastic response

Search Result 222, Processing Time 0.026 seconds

Seismic Control of Stiffness-degrading Inelastic SDOF Structures with Fully Elasto-Plastic Dampers (강성저감형 비탄성 단자유도 구조물에 설치된 완전탄소성 감쇠기의 제진성능)

  • Park, Ji-Hun;Kim, Hun-Hee;Kim, Ki-Myon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.37-48
    • /
    • 2010
  • The seismic control effect of reinforced concrete structures with low energy dissipating capacity due to stiffness degradation is investigated through nonlinear time history analysis. The primary structure is idealized as a SDOF system of modified Takeda hysteresis rule and an elasto-perfectly-plastic nonlinear spring is added to represent a hysteretic damping device. Based on statistics of the numerical analysis, equivalent linearization techniques are evaluated, and empirical equations for response prediction are proposed. As a result, estimation of the ductility demand with proposed empirical equations is more desirable than the equivalent linearization techniques. The optimal yield strengths based on empirical equations are significantly different from the optimal yield strength of elasto-perfectly-plastic systems. Also, the results indicate that the reduction effect of the ductility demand is more remarkable for smaller natural periods.

Response Analysis of RC Bridge Piers due In Multiple Earthquakes (연속지진하중에 의한 철근콘크리트 교량 교각의 응답해석)

  • Lee Do-Hyung;Jeon Jong-Su;Park Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.357-367
    • /
    • 2004
  • In this paper, the effect of cumulative damage for reinforced concrete bridge piers subjected to both single and multiple earthquakes is investigated. For this purpose, selected are three set of accelerograms one of which represents the real successive input ground motions, recorded at the same station with three months time interval. The analytical predictions indicate that piers are in general subjected to a large number of inelastic cycles and increased ductility demand due to multiple earthquakes, and hence more damage in terms of stiffness degradation is expected to occur. In addition, displacement ductility demand demonstrates that inelastic seismic response of piers can significantly be affected by the applied input ground motion characteristics. Also evaluated is the effect of multiple earthquakes on the response with shear. Comparative studies between the cases with and without shear indicate that stiffness degradation and hence reduction in energy dissipation capacity of piers are pronounced due to the multiple earthquakes combined with shear. It is thus concluded that the effect of multiple earthquakes should be taken into account for the stability assessment of reinforced concrete bridge piers.

Modified Similitude Law for Pseudodynamic Test on Small-scale Steel Models (철골 축소모헝의 유사동적실험을 위한 수정된 상사법칙)

  • Kim, Nam-Sik;Kwak, Young-Hak;Chang, Sung-Pil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.49-57
    • /
    • 2003
  • Although there are several experimental techniques to evaluate the seismic behavior and performance of civil structures, small-scale models in mast of physical tests, instead of prototypes or large-scale models, would be used due to a limitation on capacities of testing equipments. However, the inelastic seismic response prediction of small-scale models has some discrepancies inherently because the similitude law is generally derived in the elastic range. Thus, a special attention is required to regard the seismic behavior of small-scale models as one of prototypes. In this paper, differences between prototypes and small-scale models pseudodynamically tested on steel column specimens are investigated and an alternative to minimize them is suggested. In general, small-scale models could have the distorted stiffness induced from some experimental errors on test setup, steel fabrication and so on. Therefore, a modified similitude law considering both a scale factor for length and a stiffness ratio of small-scale model to prototype is proposed. Using the modified similitude law to compensate experimental errors, the pseudodynamic test results from modified small-scale model are much improved as compared with the results of prototype. According to the pseudodynamic test results of small-scale steel models, it can be concluded that the modified similitude law proposed could be effective in simulating the seismic response of prototype structures.

The Response Modification Factor of Inverted V-type Braced Steel Frames (역V형 가새골조의 반응수정계수)

  • Ahn, Hyung Joon;Jin, Song Mei
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • In this study of Eccentric Braced Frames have identified the following target eccentricity on the length of the inelastic behavior of the reaction by calculating the correction factor by comparing it to the value suggested by the earthquake provided material for the rational design aims to There are. As a variable-length V-braced frame analysis model stations were set up. Eccentricity faults in the model according to the length stiffness ratio, the maximum amount of energy dissipation were analyzed base shear and multi-layered model of the reaction from the eccentricity correction factor calculated on the length of the building standards proposed by KBC 2009 in response eccentricity correction factor calculated from The length varies. does not have the same response modification factor was confirmed.

Modal Combination Method for Prediction of Story Earthquake Load Profiles (층지진하중분포 예측을 위한 모드조합법)

  • Eom, Tae-Sung;Lee, Hye-Lin;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.65-75
    • /
    • 2006
  • Nonlinear pushover analysis is used to evaluate the earthquake response of building structures. To accurately predict the inelastic response of a structure, the prescribed story load profile should be able to describe the earthquake force profile which actually occurs during the time-history response of the structure. In the present study, a new modal combination method was developed to predict the earthquake load profiles of building structures. In the proposed method, multiple story load profiles are predicted by combining the modal spectrum responses multiplied by the modal combination factors. Parametric studies were performed far moment-resisting frames and walls. Based on the results. the modal combination factors were determined according to the hierarchy of each mode affecting the dynamic responses of structures. The proposed modal combination method was applied to prototype buildings with and without vertical irregularity. The results showed that the proposed method predicts the actual story load profiles which occur during the time-history responses of the structures.

Seismic response of RC structures rehabilitated with SMA under near-field earthquakes

  • Shiravand, M.R.;Khorrami Nejad, A.;Bayanifar, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.497-507
    • /
    • 2017
  • During recent earthquakes, a significant number of concrete structures suffered extensive damage. Conventional reinforced concrete structures are designed for life-time safety that may see permanent inelastic deformation after severe earthquakes. Hence, there is a need to utilize adequate materials that have the ability to tolerate large deformation and get back to their original shape. Super-elastic shape memory alloy (SMA) is a smart material with unique properties, such as the ability to regain undeformed shape by unloading or heating. In this research, four different stories (three, five, seven and nine) of reinforced concrete (RC) buildings have been studied and subjected to near-field ground motions. For each building, two different types of reinforcement detailing are considered, including (1) conventional steel reinforcement (RC frame) and (2) steel-SMA reinforcement (SMA RC frame), with SMA bars being used at plastic zones of beams and steel bars in other regions. Nonlinear time history analyses have been performed by "SeismoStruct" finite element software. The results indicate that the application of SMA materials in plastic hinge regions of the beams lead to reduction of the residual displacement and consequently post-earthquake repairs. In general, it can be said that shape memory alloy materials reduce structural damage and retrofit costs.

Experimental behaviour of composite beams subjected to a hogging moment

  • Pecce, Marisa;Rossi, Fernando;Bibbo, Fabio Antonio;Ceroni, Francesca
    • Steel and Composite Structures
    • /
    • v.12 no.5
    • /
    • pp.395-412
    • /
    • 2012
  • The present work addresses the rotational capacity of steel-concrete composite beams, which is a key issue for the seismic design of composite frames. Several experimental tests from the literature are summarised, and the effects of various parameters on the available plastic rotation are discussed. Furthermore, a number of remarks are made regarding the need for supplementary experimental results. The authors carried out experimental tests on four composite beams in which the type, width and connection degree of the slab were varied. During the tests, the deflection and strains in the steel profiles and bars were measured and recorded, wherein the observed trends in the measured parameters indicated that the failure mode of the beam was influenced by global and local buckling. A comparison of the experimental results to the theoretical ultimate strengths and moment-curvature relationships confirms that buckling phenomena occurred after section yielding, even if a consistent plastic rotation developed. This rotational capacity is well evaluated by a formulation that is available in the literature.

Analytical Simulation of the Seismic Response of a High-Rise RC Building Model (고층 철근콘크리트 건축구조모델의 지진응답에 대한 해석적 모사)

  • Lee, Han-Seon;Lee, Jeong-Jae;Jung, Dong-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.1-10
    • /
    • 2008
  • A series of shaking table tests were conducted on a 1:12 scale model using scaled Taft N21E earthquake records to investigate the seismic performance of a 17-story high-rise reinforced concrete building structure with a high degree of torsional eccentricity and soft-story irregularities in the bottom two stories. The main characteristics of the behaviors were: (1) a sudden change of the predominant vibration mode from the mode of translation and torsion to the torsional mode after the flexible side underwent a substantial inelastic deformation; (2) an abrupt increase in the torsional stiffness during this change of modes; (3) a warping behavior of the wall in the torsional mode; and (4) a unilateral overturning moment in the transverse direction to the table excitations. In this study, efforts were made to simulate the above characteristics using a nonlinear analysis program, Perform3D. The advantages and limitations are presented with the nonlinear models available in this software, as they are related to the correlation between analysis and test results.

Response scaling factors for nonlinear response analysis of MDOF system (다층건물의 비선형 반응해석을 위한 반응수정계수)

  • 한상환;이리형
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.103-111
    • /
    • 1995
  • Evaluating nonlinear response of a MDOF system under dynamic stochastic loads such as seismic excitation usually requires excessive computational efforts. To alleviate this computational difficulty, an approximation is developed in which the MDOF inelastic system is replaced by a simple nonlinear equivalent system(ENS).Me ENS retains the most important properties of the original system such as dynamic characteristics of the first two modes and the global yielding behavior of the MDOF system. The system response is described by the maximum global(building) and local(interstory) drifts. The equivalency is achieved by two response scaling factors, a global response scaling factor R/sub G/, and a local response scaling factor R/sub L/, applied to the responses of the ENS to match those of the original MDOF system. These response scaling factors are obtained as functions of ductility and mass participation factors of the first two modes of structures by extensive regression analyses based on results of responses of the MDOF system and the ENS to actual ground accelerations recorded in past earthquakes. To develop the ENS with two response scaling factors, Special Moment Resisting Steel Frames are considered. Then, these response scaling factors are applied to the response of ENS to obtain the nonlinear response of MDOF system.

  • PDF

Evaluation of Gusset Plate Connection Stiffness in Braced Frames (가새 골조에서 거싯 플레이트 연결부의 강성 평가)

  • Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.105-113
    • /
    • 2009
  • To improve braced frame performance, the connection strength, stiffness, and ductility must be directly considered in the frame design. The resistance of the connection must be designed to resist seismic loads and to help provide the required system ductility. In addition, the connection stiffness affects the dynamic response and the deformation demands on the structural members and connections. In this paper, current design models for gusset plate connections are reviewed and evaluated usingthe results of past experiments. Current models are still not sufficient to provide adequate connection design guidelines and the actual stress and strain states in the gusset plate are very nonlinear and highly complex. Design engineers want simple models with beam and column elements to make an approximate estimation of system and connection performance. The simplified design models are developed and evaluated to predict connection stiffness and system behavior. These models produce reasonably accurate and reliable estimation of connection stiffness.