• Title/Summary/Keyword: seismic index method

Search Result 104, Processing Time 0.024 seconds

Seismic Surface Wave Cloaking by Acoustic Wave Refraction (음향파 굴절을 이용한 지진파의 표면파 가림)

  • Lee, Dong-Woo;Kang, Young-Hoon;Kim, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.257-263
    • /
    • 2015
  • Recently two seismic cloaking methods of earthquake engineering have been suggested. One is the seismic wave deflection method that makes the seismic wave bend away and the other is the shadow zone method that makes an area that seismic waves cannot pass through. It is called as seismic cloaking. The fundamental principles of the seismic cloaking by variable refractive index were explained. A two-dimensional cylindrical model which was composed of 40 layers of different density and modulus was tested by numerical simulation. The center region of the model to be protected is called 'cloaked area' and the outer region of it to deflect the incoming wave is called 'cloaking area' or 'cloak area.' As the incoming surface wave is approaching to the cloaking area, the refractive index is decreasing and, therefore, the velocity and impedance are increasing. Then, the wave bends away the cloaked area instead of passing it. Three cases are tested depending on the comparison between the seismic wavelength and the diameter of the cloaked region. The advantage and disadvantage of the method were compared with conventional earthquake engineering method. Some practical requirements for realization in fields were discussed.

Study of Seismic Resistance Performance Evaluation Method for Existing Mid-Low Story RC Structure Buildings by Applying Fuzzy Theory (퍼지이론을 적용한 기존 중저층 철근콘크리트 건축물의 내진성능평가기법 연구)

  • Kim, Dong-Hee;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.2
    • /
    • pp.53-62
    • /
    • 2017
  • This study aims to establish a seismic resistance performance evaluation method that makes sure to secure the seismic resistance performance of the existing mid-low story reinforced concrete structures. This study focuses on the development of the seismic resistance performance evaluation method for the overall seismic resistance performance evaluation on the buildings by applying fuzzy theory. This seismic resistance performance evaluation method considers the mutual relations among the type of force, the type of member, the type of story, and the states of deterioration of the buildings. The total seismic resistance performance index from this method was calculated by the intensity weight of each evaluation item, fuzzy measure, fuzzy integration. Moreover, the evaluation methodology was established in this study to identify the performance level of the Immediate Occupancy, Life Safe, Collapse Prevention by applying the fuzzy theory.

Calculation of Seismic Capacity Evaluation Index of Shear Wall System (전단벽 구조시스템의 내진성능평가 지표 산정)

  • Park, Tae-Won;Na, Seong-Uk;Woo, Woon-Taek;Chung, Lan
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.223-230
    • /
    • 2002
  • Earthquake resistance design has been developed many countries like Japan, USA, Mexico, New Zealand etc., which countries have experienced many earthquakes. Nowadays, earthquake resistance design has come into worldwide use. In Korea, the seismic design regulations have been established since 1988 in order to minimize the economic losses. Recently performance based design method has been adopted as a new Earthquake resistance design method. These regulations, however, are targeted for newly constructed buildings, In Korea, there are no regulations for existing buildings that built before 1988. On the other hand, in Japan and USA, the seismic performance evaluation is coded. In Japan, the evaluation index which can measure seismic performance has been made. So, we need to prepare the regulations that evaluate the seismic performance, furthermore proper retrofitting design guideline needs to be proposed when remodeling old buildings. In this research, various seismic performance evaluation methods which are being used in Japan and USA are reviewed in order to establish seismic performance evaluation index for those existing old structures in Korea.

  • PDF

Seismic Damage Index Proposal and Damage Assessment for Cable-Stayed Bridge (사장교의 내진 손상지수의 제안 및 손상도 평가)

  • Kim, Eung-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.127-135
    • /
    • 2018
  • With the nation showing increasing concern for earthquakes, there have been several methods for the analysis of earthquakes and evaluation of damage. Nevertheless, there is no clear standard to assess the seismic damage to structures quantitatively. Accordingly, this study conducted seismic analysis of several forms of seismic waves and actual seismic load, targeting the cable stayed bridge, which is supported by a cable and proposes a method for evaluating the damage based on the results. The damage index was calculated based on the tilting of the pylon of the cable-stayed bridge and the characteristics of physical seismic damage was suggested with 4 levels, such as A, B, C, and D. In addition, it is not proper to simply judge that the seismic damage index is obtained as large or small at all times depending on the seismic analysis method. Although this study focused on the proposal seismic damage index and an evaluation of the damage targeting the cable stayed bridge, the result was applied to a structure with a similar maximum displacement response.

Stochastic value index for seismic risk management of existing lifelines

  • Koike, Takeshi;Imai, Toshio
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.147-165
    • /
    • 2009
  • This study proposes a certain measure or investment strategy for decision making associated with seismic retrofitting. This strategy reduces the risk of a large-scale malfunction such as water supply loss under seismic risks. The authors developed a stochastic value index that will be used in the overall evaluation of social benefit, income gain, life cycle costs and failure compensation associated with existing lifeline systems damaged by an earthquake during the remaining service period. Optimal seismic disaster prevention investment of deteriorated lifeline systems is discussed. Finally, the present study provides a performance-based design method for seismic retrofitting strategies of existing lifelines which are carried out using the target probabilities of value loss and structural failure.

Global seismic damage assessment of high-rise hybrid structures

  • Lu, Xilin;Huang, Zhihua;Zhou, Ying
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.311-325
    • /
    • 2011
  • Nowadays, many engineers believe that hybrid structures with reinforced concrete central core walls and perimeter steel frames offer an economical method to develop the strength and stiffness required for seismic design. As a result, a variety of such structures have recently been applied in actual construction. However, the performance-based seismic design of such structures has not been investigated systematically. In the performance-based seismic design, quantifying the seismic damage of complete structures by damage indices is one of the fundamental issues. Four damage states and the final softening index at each state for high-rise hybrid structures are suggested firstly in this paper. Based on nonlinear dynamic analysis, the relation of the maximum inter-story drift, the main structural characteristics, and the final softening index is obtained. At the same time, the relation between the maximum inter-story drift and the maximum roof displacement over the height is also acquired. A double-variable index accounting for maximum deformation and cumulative energy is put forward based on the pushover analysis. Finally, a case study is conducted on a high-rise hybrid structure model tested on shaking table before to verify the suggested quantities of damage indices.

Seismic Reliability Assessment of Mid- and High-rise Post-tensioned CLT Shear Wall Structures

  • Sun, Xiaofeng;Li, Zheng;He, Minjuan
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.175-185
    • /
    • 2020
  • Currently, few studies have been conducted to comprehend the seismic reliability of post-tensioned (PT) CLT shear wall structures, due to the complexity of this kind of structural system as well as due to lack of a reliable structural model. In this paper, a set of 4-, 8-, 12-, and 16-storey benchmark PT CLT shear wall structures (PT-CLTstrs) were designed using the direct displacement-based design method, and their calibrated structural models were developed. The seismic reliability of each PT-CLTstr was assessed based on the fragility analysis and based on the response surface method (RSM), respectively. The fragility-based reliability index and the RSM-based reliability index were then compared, for each PT-CLTstr and for each seismic hazard level. Results show that the RSM-based reliabilities are slightly less than the fragility-based reliabilities. Overall, both the RSM and the fragility-based reliability method can be used as efficient approaches for assessing the seismic reliabilities of the PT-CLTstrs. For these studied mid- and high-rise benchmark PT-CLTstrs, following their fragility-based reliabilities, the 8-storey PT-CLTstr is subjected to the least seismic vulnerability; while, following their RSM-based reliabilities, the 4-storey PT-CLTstr is subjected to the least seismic vulnerability

Strength Index in Seismic Performance Evaluation Method of Existing Reinforced Concrete Buildings (기존 철근콘크리트 건물 내진진단법의 강도지표)

  • 이원호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.278-287
    • /
    • 2000
  • In Korea, countermeasures against earthquake disasters such as the seismic performance evaluation and/or retrofit scheme of buildings have not been fully performed since Korea had not been experienced many destructive earthquakes in the past. However, due to more than four hundred earthquakes with slight/medium intensity occurred in the off-coastal and inland of Korea during the past 20 years, and due to the great earthquakes occurred recently in neighboring countries, such as the 1995 Hyogoken-Nambu Earthquake with more than 6,500 fatalities in Japan and the 1999 Ji-Ji Earthquake with more than 2,500 fatalities in Taiwan, the importance of the future earthquake preparedness measures in Korea is highly recognized. The main objective of this paper is to provide the basic data for development of a methodology for the future earthquake preparedness in Korea by investigating the concept and applicabilities of the Japanese Standard for Evaluation of Seismic Performance of Existing RC Buildings developed in Japan among the methodologies of all over the world. In this paper, a seismic performance evaluation method of the existing reinforced concrete buildings is proposed based on experimental data of columns and walls carried out in Korea by referring the Japanese Standard, especially focusing on the Strength Index(C) among the indices in the seismic capacity index(IS) equations. Also, the seismic capacities of two existing reinforced concrete buildings in Korea are evaluated based on the proposed methodology and the Japanese Standard, and the correlations between the seismic capacities by the proposed methodology and the Japanese Standard are discussed.

  • PDF

Displacement-based design method for an energy-dissipation self-centering wall panel structure

  • Sisi Chao;Guanqi Lan;Hua Huang;Huiping Liu;Chenghua Li
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.289-304
    • /
    • 2024
  • The seismic performance of traditional steel frame-shear wall structures was significantly improved by the application of self-centering steel-reinforced concrete (SRC) wall-panel structures in the steel frames. This novel resilience functionality can rapidly restore the structure after an earthquake. The presented steel frame with steel-reinforced concrete self-centering wall-panel structures (SF-SCW) was validated, indicating its excellent seismic performance. The seismic design method based on bear capacity cannot correctly predict the elastic-plastic performance of the structure, especially certain weak floors that might be caused by a major fracture. A four-level seismic performance index, including intact function, continued utilization, life safety, and near-collapse, was established to achieve the ideal failure mode. The seismic design method, based on structural displacement, was proposed by considering performance objectives of the different seismic action levels. The pushover analysis of a six-floor SF-SCW structure was carried out under the proposed design method and the results showed that this six-floor structure could achieve the predicted failure mode.

A correction method for objective seismic damage index of reinforced concrete columns

  • Kang, Jun Won;Lee, Jeeho
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.741-748
    • /
    • 2018
  • In this paper, the sensitivity of a plastic-damage-based structural damage index on mesh density is studied. Multiple finite element meshes with increasing density are used to investigate their effect on the damage index values calculated from nonlinear finite element simulations for a reinforced concrete column subjected to cyclic loading. With the simulation results, this paper suggests a correction method for the objective damage index based on nonlinear regression of volumetric tensile damage ratio data. The modified damage index values are presented in the quasi-static cyclic simulation to show the efficacy of the suggested correction method.