• 제목/요약/키워드: seismic hazards

검색결과 111건 처리시간 0.025초

국내 주요 광역 도시에 대한 등재해도 스펙트럼 분석 (Analysis of Uniform Hazard Spectra for Metropolises in the Korean Peninsula)

  • 이현미;김민규;신동훈;최인길
    • 한국지진공학회논문집
    • /
    • 제17권2호
    • /
    • pp.71-77
    • /
    • 2013
  • The uniform hazard spectra for seven major cities in Korea, Seoul, Daejeon, Daegu, Busan, Gwangju, Ulsan, and Inchon are suggested. Probabilistic seismic hazard analyses were performed using the attenuation equations derived from seismology research in Korea since 2000 and the seismotectonic models selected by expert assessment. For the estimation of the uniform hazard spectra, the seismic hazard curves for several frequencies and PGAs were calculated by using the spectral attenuation equations. The seismic hazards (annual exceedance probability) calculated for the 7 metropolises ranged from about $1.4305{\times}0^{-4}/yr$ to $1.7523{\times}10^{-4}/yr$ and averaged out at about $1.5902{\times}10^{-4}/yr$ with a log standard deviation of about 0.085 at 0.2 g. The uniform hazard spectra with recurrence intervals of 500, 1000, and 2500 years estimated by using the calculated mean seismic hazard on the frequencies presented peak values at 10.0 Hz, and the log standard deviations of the difference between metropolises ranged from about 0.013 to 0.209. In view of the insignificant difference between the estimated uniform hazard spectra obtained for the considered metropolises, the mean uniform hazard spectrum was estimated. This mean uniform hazard spectrum is expected to be used as input seismic response spectrum for rock sites in Korea.

Piecewise exact solution for analysis of base-isolated structures under earthquakes

  • Tsai, C.S.;Chiang, Tsu-Cheng;Chen, Bo-Jen;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • 제19권4호
    • /
    • pp.381-399
    • /
    • 2005
  • Base isolation technologies have been proven to be very efficient in protecting structures from seismic hazards during experimental and theoretical studies. In recent years, there have been more and more engineering applications using base isolators to upgrade the seismic resistibility of structures. Optimum design of the base isolator can lessen the undesirable seismic hazard with the most efficiency. Hence, tracing the nonlinear behavior of the base isolator with good accuracy is important in the engineering profession. In order to predict the nonlinear behavior of base isolated structures precisely, hundreds even thousands of degrees-of-freedom and iterative algorithm are required for nonlinear time history analysis. In view of this, a simple and feasible exact formulation without any iteration has been proposed in this study to calculate the seismic responses of structures with base isolators. Comparison between the experimental results from shaking table tests conducted at National Center for Research on Earthquake Engineering in Taiwan and the analytical results show that the proposed method can accurately simulate the seismic behavior of base isolated structures with elastomeric bearings. Furthermore, it is also shown that the proposed method can predict the nonlinear behavior of the VCFPS isolated structure with accuracy as compared to that from the nonlinear finite element program. Therefore, the proposed concept can be used as a simple and practical tool for engineering professions for designing the elastomeric bearing as well as sliding bearing.

A new equation based on PGA to provide sufficient separation distance between two irregular buildings in plan

  • Loghmani, Adel;Mortezaei, Alireza;Hemmati, Ali
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.543-553
    • /
    • 2020
  • Past earthquakes experience shows that serious damage or collapse of buildings have dramatically accrued when sufficient separation distance has not been provided between two adjacent structures. The majority of past studies related to the pounding topic indicate that obtaining the gap size between two buildings is able to prevent collision and impact hazards during seismic excitations. Considering minimization of building collisions, some relationships have been suggested to determine the separation distance between adjacent buildings. Commonly, peak lateral displacement, fundamental period and natural damping as well as structural height of two adjacent buildings are numerically considered to determine the critical distance. Hence, the aim of present study is to focus on all mentioned parameters and also utilizing the main characteristic of earthquake record i.e. PGA to examine the lateral displacement of irregular structures close to each other and also estimate the sufficient separation distance between them. Increasing and decreasing the separation distance is inherently caused economical problems due to the land ownership from a legal perspective and pounding hazard as well. Therefore, a new equation is proposed to determine the optimum critical distance. The accuracy of the proposed formula is validated by different models and various earthquake records.

Performance-based wind design framework proposal for tall buildings

  • Alinejad, Hamidreza;Kang, Thomas H.K.;Jeong, Seung Yong
    • Wind and Structures
    • /
    • 제32권4호
    • /
    • pp.283-292
    • /
    • 2021
  • Performance-based seismic design (PBSD) is currently used for retrofitting of older buildings and the design of new buildings. Whereas, application of performance-based design for wind load is still under development. The tendency has been in the codes to increase wind hazard based on recent recorded events. Since tall buildings are highly susceptible to wind load, necessity for developing a framework for performance-based wind design (PBWD) has intensified. Only a few guidelines such as ASCE (2019) provide information on using PBWD as an alternative for code prescriptive wind design. Though wind hazards, performance objectives, analysis techniques, and acceptance criteria are explained, no recommendations are provided for several aspects like how to select a proper level of wind hazard for each target performance criterion. This paper is an attempt to explain current design philosophy for wind and seismic loads and inherent connection between the components of PBSD for development of a framework for PBWD of tall buildings. Recognizing this connection, a framework for PBWD based on limits set for serviceability and strength is also proposed. Also, the potential for carrying out PBWD in line with ASCE 7-16 is investigated and proposed in this paper.

특이 스펙트럼 분석 기반 단일 채널 탄성파 자료처리 연구 (Single-Channel Seismic Data Processing via Singular Spectrum Analysis)

  • 정우돈;이찬희;강승구
    • 지구물리와물리탐사
    • /
    • 제27권2호
    • /
    • pp.91-107
    • /
    • 2024
  • 단일 채널 탄성파 탐사는 소규모 자료획득 시스템으로 지하 지질구조를 파악하는 효과적인 방법이다. 영벌림거리 혹은 가까운 벌림거리를 사용하여 획득한 단일 채널 탄성파 자료는 연직 방향의 지하 지질구조를 직접 반영하므로 탄성파 단면도를 효과적으로 작성할 수 있다. 그러나 공통중간점 중합 과정을 적용할 수 없어 신호 대 잡음비가 매우 낮으므로 단면에 나타나는 반사 구조의 정밀한 해석에 있어 중합 단면 대비 불리함을 가진다. 본 연구에서는 단일 채널 탄성파 자료의 신호 대 잡음비를 향상시키기 위해 특이 스펙트럼 분석을 기반으로 한 잡음 제거 및 신호 향상 방법을 제안한다. 기존의 특이 스펙트럼 분석 방법은 행렬의 특정 특잇값을 임의로 추출하여 자료 내에 있는 무작위 잡음을 제거하는 방식으로 수행되었으나, 이는 낮은 신호 대 잡음비나 이상 잡음이 있는 자료에 적용할 수 없다. 따라서 본 연구에서는 행렬의 특잇값을 최적화하고 저계수 근사를 수행하여 무작위 및 이상 잡음을 동시에 효과적으로 제거한다. 또한, 잡음 제거로 인한 신호 손실을 보정하고 탄성파 이벤트의 수평적 연속성을 향상시키기 위해 행렬의 고유 영상에 기반한 가중치를 계산하여 탄성파 단면의 품질을 향상시킨다. 본 연구에서 제안하는 기술의 적용성 및 우수성을 확인하기 위해 북극해 척치해저고원에서 획득한 단일 채널 스파커 탄성파 자료에 대한 자료 처리 실험을 수행하였으며, 수치 예제를 통해 매우 높은 수준의 신호 대 잡음비와 최소의 신호 손실을 가진 탄성파 단면을 얻을 수 있었다. 본 연구에서 제안하는 단일 채널 탄성파 자료 처리 기술은 향후 국내 연안지역의 해양개발과 해저 지질재해를 규명하기 위한 단일 채널 및 초고해상도 탄성파 탐사에 매우 효과적으로 기여할 것으로 기대된다.

활화산의 감시 기법에 대한 연구 (Monitoring Techniques for Active Volcanoes)

  • 윤성효;이정현;장철우
    • 암석학회지
    • /
    • 제23권2호
    • /
    • pp.119-138
    • /
    • 2014
  • 활화산을 감시하는 방법은 육안으로 직접 관찰하는 방법, 과거의 분화 기록 문건을 참조하는 방법, 직접적으로 관측 장비를 동원하여 화산체를 감시하는 방법 등이 있다. 이 중 관측 장비를 이용하여 화산체를 감시하는 방법 중 가장 기본적인 것은 지진활동도의 감시이며, 이외에도 지진계에 기록된 지진활동 중 인위적인 노이즈를 걸러내는 데 효과적인 공진 관측, 그리고 정밀수준기, 전자거리측정기, 경사계, GPS, InSAR 관측법을 통한 지표변형의 감시, 화산가스 감시, 수문학적/기상학적 감시, 기타 지구물리학적 감시 등의 방법이 있다. 이러한 감시 기법을 통해 화산의 활동을 효과적으로 감시하고 이를 통해 지하 마그마방에서의 마그마 거동을 파악함으로써 미래의 화산 분화를 보다 정확하게 예측하고 조기 경보하여 그에 따른 재해의 피해를 경감하고 최소화 할 수 있다.

Comparison of classical and reliable controller performances for seismic response mitigation

  • Kavyashree, B.G.;Patil, Shantharama;Rao, Vidya S.
    • Earthquakes and Structures
    • /
    • 제20권3호
    • /
    • pp.353-364
    • /
    • 2021
  • Natural hazards like earthquakes, high winds, and tsunami are a threat all the time for multi-story structures. The environmental forces cannot be clogged but the structures can be prevented from these natural hazards by using protective systems. The structural control can be achieved by using protective systems like the passive, active, semi-active, and hybrid protective systems; but the semi-active protective system has gained importance because of its adaptability to the active systems and reliability of the passive systems. Therefore, a semi-active protective system for the earthquake forces has been adopted in this work. Magneto-Rheological (MR) damper is used in the structure as a semi-active protective system; which is connected to the current driver and proposed controller. The Proportional Integral Derivative (PID) controller and reliable PID controller are two proposed controllers, which will actuate the MR damper and the desired force is generated to mitigate the vibration of the structural response subjected to the earthquake. PID controller and reliable PID controller are designed and tuned using Ziegler-Nichols tuning technique along with the MR damper simulated in Simulink toolbox and MATLAB to obtain the reduced vibration in a three-story benchmark structure. The earthquake is considered to be uncertain; where the proposed control algorithm works well during the presence of earthquake; this paper considers robustness to provide satisfactory resilience against this uncertainty. In this work, two different earthquakes are considered like El-Centro and Northridge earthquakes for simulation with different controllers. In this paper performances of the structure with and without two controllers are compared and results are discussed.

Markov-based time-varying risk assessment of the subway station considering mainshock and aftershock hazards

  • Wei Che;Pengfei Chang;Mingyi Sun
    • Earthquakes and Structures
    • /
    • 제24권4호
    • /
    • pp.303-316
    • /
    • 2023
  • Rapid post-earthquake damage estimation of subway stations is particularly necessary to improve short-term crisis management and safety measures of urban subway systems after a destructive earthquake. The conventional Performance-Based Earthquake Engineering (PBEE) framework with constant earthquake occurrence rate is invalid to estimate the aftershock risk because of the time-varying rate of aftershocks and the uncertainty of mainshock-damaged state before the occurrence of aftershocks. This study presents a time-varying probabilistic seismic risk assessment framework for underground structures considering mainshock and aftershock hazards. A discrete non-omogeneous Markov process is adopted to quantify the time-varying nature of aftershock hazard and the uncertainties of structural damage states following mainshock. The time-varying seismic risk of a typical rectangular frame subway station is assessed under mainshock-only (MS) hazard and mainshock-aftershock (MSAS) hazard. The results show that the probabilities of exceeding same limit states over the service life under MSAS hazard are larger than the values under MS hazard. For the same probability of exceedance, the higher response demands are found when aftershocks are considered. As the severity of damage state for the station structure increases, the difference of the probability of exceedance increases when aftershocks are considered. PSDR=1.0% is used as the collapse prevention performance criteria for the subway station is reasonable for both the MS hazard and MSAS hazard. However, if the effect of aftershock hazard is neglected, it can significantly underestimate the response demands and the uncertainties of potential damage states for the subway station over the service life.

포항지진 발생 주변지역 지질특성에 따른 저수지 취약성 해석 (Analysis of Reservoir Vulnerability Based on Geological Structure Around Pohang Earthquake)

  • 임성근;송성호;유재형
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.169-174
    • /
    • 2018
  • A total of 594 reservoirs (17%), which are managed by KRC, equipped with earthquake-resistant facilities whereas remaining ones did not. In addition, reservoirs were placed without the effect of geological structures (i.e., fault and lineament). Therefore, development on technique for alleviating the potential hazards by natural disasters along faults and lineaments has required. In addition, an effective reinforcement guideline related to the geological vulnerabilities around reservoirs has required. The final goal of this study is to suggest the effective maintenance for the safety of earth fill dams. A radius 2 km, based on the center of the reservoir in the study area was set as the range of vulnerability impacts of each reservoir. Seismic design, precise safety diagnosis, seismic influence and geological structure were analyzed for the influence range of each reservoir. To classify the vulnerability of geological disasters according to the fault distribution around the reservoir, evaluation index of seismic performance, precise safety diagnosis, seismic influence and geological structure were also developed for each reservoir, which were a component of the vulnerability assessment of geological disasters. As a result, the reservoir with the highest vulnerability to geological disasters in the pilot district was analyzed as Kidong reservoir with an evaluation index of 0.364. Within the radius of 100km from the epicenter of the Pohang earthquake, the number of agricultural infrastructure facilities subject to urgent inspections were 1,180 including reservoirs, pumping stations and intakes. Four reservoirs were directly damaged by earthquake among 724 agricultural reservoirs. As a result of the precise inspection and electrical resistivity survey of the reservoir after the earthquake, it was reported that cracks on the crest of reservoirs were not a cause of concern. However, we are constantly monitoring the safety of agricultural facilities by Pohang aftershocks.

수렴단층과 읍천단층의 제4기 활동 및 지진 안정성 (Quaternary Tectonic Activities and Seismic Stability of Suryum Fault and Yupchon Fault, SE Korea)

  • 황상일;신재열;윤순옥
    • 한국지역지리학회지
    • /
    • 제18권4호
    • /
    • pp.351-363
    • /
    • 2012
  • 한반도는 주변의 북중국, 일본과 같이 지구조적 활동이 활발한 지역들에 비해 상대적으로 안정된 것으로 알려져 있다. 그럼에도 불구하고 한반도 남동부 지역을 중심으로 지속적으로 보고되고 있는 제4기 단층의 존재는 한반도의 신기 지체구조 운동의 성격을 본질적이고 구체적으로 이해할 필요가 있음을 시사한다. 경주시 양남면 일대에서 확인된 수렴단층과 읍천단층은 그 최종 운동 시기가 제4기 후기로 확인되고 있어 현생 지구조 체계 하에서 발생하고 있는 지각 변형 사건임을 분명히 지시해 주고 있다. 이들 단층운동과 관련된 동-서 방향의 최대 압축 응력은 인도-호주판과 유라시아 판의 충돌 응력이 원거리에 전파되는 과정에서 발생하는 것으로 이해된다. 특징적으로 한반도 남동부 지역의 제4기 단층들은 반복적 재활성 가능성이 크므로 잠재적 지진 재해에 대비해야 할 것으로 판단되며, 특히 본 연구는 연구 지역 내에 위치하고 있는 원자력 발전소 인근의 지진 안정성에 관한 중요한 단서를 제공하고 있다.

  • PDF