• Title/Summary/Keyword: seismic ground motion

Search Result 728, Processing Time 0.027 seconds

A Study on Dynamic Response Analysis of High Structure under Earthquake Load (지진하중을 받는 고층건물의 동적응답 해석에 관한 연구)

  • 배동명;신창혁
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.4
    • /
    • pp.337-346
    • /
    • 2000
  • Earthquake is a natural disaster accompanied by damage of human and properties caused by the ground motion, crustal movements, faults as well as tidal wave. The earthquake is known to occur mostly in earthquake-prone areas and the Korean Peninsula is known to be relatively safe in terms of geological characteristics. In order to withstand on severe environmental dynamic random load such as an earthquake, the large structure need to be designed to withstand the anticipated seismic tremor. The seismetic design is essential for building structures, bridges, and large structures which is handles explosive gases. Thus, the necessity of earthquake resistant analysis for large structure is growing and the capability of dynamic analysis should be obtained. In this thesis, dynamic responses of a high building(height 60m, width 18) which subjected to random earthquake load are presented which responses are derived using dynamic analysis methods such as response spectrum analysis, mode superposition and direct integration. Each results are also compared to review the merit of each methods.

  • PDF

Preliminary Structural Design of Wall-Frame Systems for Optimum Torsional Response

  • Georgoussis, George K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.45-58
    • /
    • 2017
  • Recent investigations have pointed out that current code provisions specifying that the stiffness of reinforced concrete elements is strength independent, and therefore can be estimated prior to any strength assignment, is incorrect. A strength allocation strategy, suitable for preliminary structural design of medium height wall-frame dual systems, is presented for allocating strength in such buildings and estimating the dependable rigidities. The design process may be implemented by either the approximate continuous approach or the stiffness matrix method. It is based on the concept of the inelastic equivalent single-degree-of-freedom system which, the last few years, has been used to implement the performance based seismic design. The aforesaid strategy may also be used to determine structural configurations of minimum rotation distortion. It is shown that when the location of the modal centre of rigidity, as described in author's recent papers, is within a close distance from the mass axis the torsional response is mitigated. The methodology is illustrated in ten story building configurations, whose torsional response is examined under the ground motion of Kobe 1995, component KJM000.

Performance based evaluation of RC coupled shear wall system with steel coupling beam

  • Bengar, Habib Akbarzadeh;Aski, Roja Mohammadalipour
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.337-355
    • /
    • 2016
  • Steel coupling beam in reinforced concrete (RC) coupled shear wall system is a proper substitute for deep concrete coupling beam. Previous studies have shown that RC coupled walls with steel or concrete coupling beam designed with strength-based design approach, may not guarantee a ductile behavior of a coupled shear wall system. Therefore, seismic performance evaluation of RC coupled shear wall with steel or concrete coupling beam designed based on a strength-based design approach is essential. In this paper first, buildings with 7, 14 and 21 stories containing RC coupled shear wall system with concrete and steel coupling beams were designed with strength-based design approach, then performance level of these buildings were evaluated under two spectrum; Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE). The performance level of LS and CP of all buildings were satisfied under DBE and MCE respectively. In spite of the steel coupling beam, concrete coupling beam in RC coupled shear wall acts like a fuse under strong ground motion.

Nonparametric Ground-Motion Evaluation of Shear-Wave Fourier Spectra (비매개변수법에 의한 주파수별 스펙트럼감쇠 평가)

  • 연관희;박동희;장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.20-27
    • /
    • 2003
  • The nonparametric method was employed to obtain detailed broadband attenuation characteristics of horizontal Fourier spectra without generally assigned constraint that derived path terms be zeros at a reference distance. Instead, path terms fer a reference distance were obtained based on the physical phenomenon that the seismic phase is stable over the hypocentral distance range from 200km to 400km so that the Q-values evaluated at several distances inside that region should be the same. The inverted path terms show three distinct linear regions roughly divided by hypocentral distances at 65km and 115km. Also complex behavior at the near distance range below 100km was revealed which can not be properly fitted by combination of single $Q_{0}$ $f^{η}$ model and any geometrical spreading models.s.

  • PDF

Lateral-torsional seismic behaviour of plan unsymmetric buildings

  • Tamizharasi, G.;Prasad, A. Meher;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.239-260
    • /
    • 2021
  • Torsional response of buildings is attributed to poor structural configurations in plan, which arises due to two factors - torsional eccentricity and torsional flexibility. Usually, building codes address effects due to the former. This study examines both of these effects. Buildings with torsional eccentricity (e.g., those with large eccentricity) and with torsional flexibility (those with torsional mode as a fundamental mode) demand large deformations of vertical elements resisting lateral loads, especially those along the building perimeter in plan. Lateral-torsional responses are studied of unsymmetrical buildings through elastic and inelastic analyses using idealised single-storey building models (with two degrees of freedom). Displacement demands on vertical elements distributed in plan are non-uniform and sensitive to characteristics of both structure and earthquake ground motion. Limits are proposed to mitigate lateral-torsional effects, which guides in proportioning vertical elements and restricts amplification of lateral displacement in them and to avoid torsional mode as the first mode. Nonlinear static and dynamic analyses of multi-storey buildings are used to validate the limits proposed.

PGA estimates for deep soils atop deep geological sediments -An example of Osijek, Croatia

  • Bulajic, Borko D.;Hadzima-Nyarko, Marijana;Pavic, Gordana
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.233-246
    • /
    • 2022
  • In this study, the city of Osijek is used as a case study area for low to medium seismicity regions with deep soil over deep geological deposits to determine horizontal PGA values. For this reason, we propose new regional attenuation equations for PGA that can simultaneously capture the effects of deep geology and local soil conditions. A micro-zoning map for the city of Osijek is constructed using the derived empirical scaling equations and compared to all prior seismic hazard estimates for the same area. The findings suggest that the deep soil atop deep geological sediments results in PGA values that are only 6 percent larger than those reported at rock soil sites atop geological rocks. Given the rarity of ground motion records for deep soils atop deep geological layers around the world, we believe this case study is a start toward defining more reliable PGA estimates for similar areas.

A Comparison Study of the Amplification Characteristics of the Seismic Observation Sites using Coda wave, Background Noise, and S-wave Energy from Fukuoka Earthquakes Series (후쿠오카 지역 발생 지진의 Coda파, 배경잡음 및 S파 에너지를 이용한 관측소의 증폭특성에 관한 비교 연구)

  • Kim, Jun Kyoung
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.435-445
    • /
    • 2013
  • Since design response spectrum does not reflect local soil characteristics, site specific response spectrum of observed ground motions appears relatively higher than design response spectrum at high frequency range. These problems have been pointed out from the domestic seismic design industry. Among various estimation methods, this study used the method H/V ratio of ground motion for estimating site amplification. This method has been extended to background noise, Coda waves and S waves recently for estimating site amplification. This study applied this method to the background noise and Coda wave energy. This study analysed more than 267 background noises from 15 macro earthquakes including main Fukuoka earthquake (2005/03/20, M=6.5) and then compared to results from S waves, at 8 main domestic seismic stations. The results showed that most of the domestic seismic stations gave similar results to those from S waves. Each station showed its own characteristics of site amplification property in low, high and specific resonance frequency ranges. Comparison of this study to other studies using different method can give us much information about dynamic amplification of domestic sites characteristics and site classification.

Comparison of Performance of Restrainers of Steel Cables and Shape Memory Alloy Bars for Multiple-Span-Simply-Supported Bridges (다경간 단순지지 교량의 강케이블 및 형상기억합금 변위제어장치의 성능 비교)

  • Choi, Eun Soo;Kim, Lee Hyeon;Park, Joo Nam;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.587-597
    • /
    • 2007
  • Steel restrainer cables for multiple frame bridges in California in the United States have been shown to be effective in preventing unseating at internal hinges during the past several earthquakes. Consequently, the steel-cable-restrainer is being tested for applications on multiple-span-simply-supported (MSSS) bridges in the mid-American region. In addition, shape memory alloy (SMA) bars in tension are being studied for the same application, multiple frame bridges, the developed seismic forces are transferred to piers through the restrainers. However, in MSSS bridges, the seismic forces are transferred to abutments by the restrainers. Therefore, the abutment' behavior should also be investigated. In this study, we assessed the seismic performance of the three types of restrainers, such as steel restrainer cables, SMA in tension, and SMA in bending for an MSSS bridge from moderate to strong ground motion, bending test of an SMA bar was conducted and its analytical model was determined for this study. Nonlinear time history analyses were conducted to assess the seismic responses of the as-built and the retrofitted bridges. All three types of restrainers reduced the hinge opening and the SMA in tension was the most effective of the three devices in preventing the unseating, all restrainers produced damage on the abutment from the pulling action of the MSSS bridge due to strong ground motions, was found that the retrofit of the abutment in the pulling action is required in the installation of restrainers in MSSS bridges.

Seismic Fragility Analysis of Rahmen-type Continuous Bridge Supported by High Piers (고교각으로 지지된 라멘형 연속교의 지진취약도 분석)

  • Kang, Pan-Seung;Hong, Ki-Nam;Yeon, Yeong-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.84-95
    • /
    • 2019
  • This paper reports the process of seismic fragility analysis for the rahman-type continuous bridge system. The target structure was the five span highway bridge with maximum pier hight of 72m. OpenSees software was used for the nonlinear time history analysis. In this study, 50 ground motions are considered for nonlinear time history analysis. For each ground motion, PGA was scaled from 0.1g to 2.0g with intervals of 0.1g in order to consider a wide range of the seismic intensity measure. In addition, yield displacement and ultimate displacement of each pier were calculated through section analysis. Based on the result of non linear time history analysis and section analysis, damage condition of target bridge was classified according to the definition of damage condition proposed by Barbat et al. As a result, it was predicted that Extensive Damage occurred at P1 when 0.731 g earthquake occurred in the longitudinal direction. Based on the seismic fragility analysis results, it is found that the probability of occurrence of Extensive Damage in the 4,800 - year period earthquake was about 4.2%. Therefore the target bridge has enough safety for earthquake.

Seismic Analysis of Tunnel in Transverse Direction Part II: Evaluation of Seismic Tunnel Response via Dynamic Analysis (터널 횡방향 지진해석 Part II: 동적해석을 통한 터널의 지진응답 예측)

  • Park, Du-Hee;Shin, Jong-Ho;Yun, Se-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.71-85
    • /
    • 2010
  • Dynamic analyses of tunnels are widely performed in practice in Korea. Accurate performance of a dynamic analysis is very difficult, requiring appropriate application of lower and lateral boundary conditions, deconvolution, constitutive model, and selection of dynamic soil properties etc. Lack of a systematic guideline on how to perform the dynamic analysis makes it even more difficult to perform an analysis. In addition, dynamic analyses are not needed in most cases and pseudo-static analyses are more than adequate. However, they are performed without a clear understanding on the need for the dynamic analysis and differences between the two methods. In this study, firstly, a guideline for correctly performing a 2D dynamic analysis is developed. Secondly, the differences in the tunnel responses using dynamic and pseudo-static analyses are discussed and compared. The results show that the discrepancies between the dynamic and static analyses are not significant for most cases. It is therefore recommended that the dynamic analyses be performed at tunnel portal, very soft ground, or in cases where spatial variation of the ground motion needs to be considered in the seismic analysis of tunnels in transverse direction.