• Title/Summary/Keyword: seismic fragility assessment

Search Result 181, Processing Time 0.026 seconds

Safety assessment of dual shear wall-frame structures subject to Mainshock-Aftershock sequence in terms of fragility and vulnerability curves

  • Naderpour, Hosein;Vakili, Khadijeh
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.425-436
    • /
    • 2019
  • Successive ground motions having short time intervals have occurred in many earthquakes so far. It is necessary to investigate the effects of this phenomenon on different types of structures and to take these effects into consideration while designing or retrofitting structures. The effects of seismic sequences on the structures with combined reinforced concrete shear wall and moment resisting frame system have not been investigated in details yet. This paper has tried to analyse the seismic performance of structures with such structural systems subjected to mainshock-aftershock sequences. The effects of the seismic sequences on the investigated models are evaluated by strong measures such as IDA capacity and fragility and vulnerability curves. The results of this study show that the seismic sequences have a significant effect on the investigated models, which necessitates considering this effect on designing, retrofitting, decision making, and taking precautions.

Development of Seismic Performance Estimation Service of Bridge through Seismic Risk Assessment (지진위험도평가 방법을 통한 교량의 내진성능 추정 서비스 개발)

  • Cho, Han Min;Lee, Jin Hyuk;Park, Ki Tae;Kim, Kun Soo;Jung, Kyu San;Kim, Jae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.535-542
    • /
    • 2023
  • In order to understand the seismic performance of a bridge, it is common to review through seismic performance evaluation and numerical analysis of the target bridge. Seismic performance evaluation and review through numerical analysis are analysis methods for specific target bridges, and many problems can arise in each management body managing bridges nationwide. Therefore, in this study, research was conducted to estimate the seismic performance of public bridges with various types and characteristics. Seismic performance was estimated by applying the seismic risk assessment method, calculating the seismic fragility curve for the type and specifications of the bridge, and estimating the seismic performance of the bridge in use by applying the domestic seismic design standard. In addition, by installing it on the platform, service items were established so that users can easily review the estimation of seismic performance of domestic bridges.

Seismic vulnerability assessment criteria for RC ordinary highway bridges in Turkey

  • Avsar, O.;Yakut, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.127-145
    • /
    • 2012
  • One of the most important and challenging steps in seismic vulnerability and performance assessment of highway bridges is the determination of the bridge component damage parameters and their corresponding limit states. These parameters are very essential for defining bridge damage state as well as determining the performance of highway bridges under a seismic event. Therefore, realistic damage limit states are required in the development of reliable fragility curves, which are employed in the seismic risk assessment packages for mitigation purposes. In this article, qualitative damage assessment criteria for ordinary highway bridges are taken into account considering the critical bridge components in terms of proper engineering demand parameters (EDPs). Seismic damage of bridges is strongly related to the deformation of bridge components as well as member internal forces imposed due to seismic actions. A simple approach is proposed for determining the acceptance criteria and damage limit states for use in seismic performance and vulnerability assessment of ordinary highway bridges in Turkey constructed after the 1990s. Physical damage of bridge components is represented by three damage limit states: serviceability, damage control, and collapse prevention. Inelastic deformation and shear force demand of the bent components (column and cap beam), and superstructure displacement are the most common causes for the seismic damage of the highway bridges. Each damage limit state is quantified with respect to the EDPs: i.e. curvature and shear force demand of RC bent components and superstructure relative displacement.

Seismic vulnerability assessment of confined masonry wall buildings

  • Ranjbaran, Fariman;Hosseini, Mahmood
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.201-216
    • /
    • 2014
  • In this paper the vulnerability of the confined masonry buildings is evaluated analytically. The proposed approach includes the nonlinear dynamic analysis of the two-story confined masonry buildings with common plan as a reference structure. In this approach the damage level is calculated based on the probability of exceedance of loss vs a specified ground motion in the form of fragility curves. The fragility curves of confined masonry wall buildings are presented in two levels of limit states corresponding to elastic and maximum strength versus PGA based on analytical method. In this regard the randomness of parameters indicating the characteristics of the building structure as well as ground motion is considered as likely uncertainties. In order to develop the analytical fragility curves the proposed analytical models of confined masonry walls in a previous investigation of the authors, are used to specify the damage indices and responses of the structure. In order to obtain damage indices a series of pushover analyses are performed, and to identify the seismic demand a series of nonlinear dynamic analysis are conducted. Finally by considering various mechanical and geometric parameters of masonry walls and numerous accelerograms, the fragility curves with assuming a log normal distribution of data are derived based on capacity and demand of building structures in a probabilistic approach.

Seismic resilience evaluation of RC-MRFs equipped with passive damping devices

  • Kamaludin, Puteri Nihal Che;Kassem, Moustafa Moufid;Farsangi, Ehsan Noroozinejad;Nazri, Fadzli Mohamed;Yamaguchi, Eiki
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.391-405
    • /
    • 2020
  • The use of passive energy dissipation devices has been widely used in the construction industry to minimize the probability of damage occurred under intense ground motion. In this study, collapse margin ratio (CMR) and fragility curves are the main parameters in the assessment to characterize the collapse safety of the structures. The assessment is done on three types of RC frame structures, incorporating three types of dampers, viscoelastic, friction, and BRB dampers. The Incremental dynamic analyses (IDA) were performed by simulating an array of 20 strong ground motion (SGM) records considering both far-field and near-field seismic scenarios that were followed by fragility curves. With respect to far-field ground motion records, the CMR values of the selected frames indicate to be higher and reachable to safety margin more than those under near-field ground motion records that introduce a high devastating impact on the structures compared to far-field excitations. This implies that the near field impact affects the ground movements at the site by attenuation the direction and causing high-frequency filtration. Besides that, the results show that the viscoelastic damper gives better performance for the structures in terms of reducing the damages compared to the other energy dissipation devices during earthquakes.

Seismic reliability evaluation of steel-timber hybrid shear wall systems

  • Li, Zheng;He, Minjuan;Lam, Frank;Zhou, Ruirui;Li, Minghao
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.289-297
    • /
    • 2017
  • This paper presents seismic performance and reliability evaluation on steel-timber hybrid shear wall systems composed of steel moment resisting frames and infill light frame wood shear walls. Based on experimental observations, damage assessment was conducted to determine the appropriate damage-related performance objectives for the hybrid shear wall systems. Incremental time-history dynamic analyses were conducted to establish a database of seismic responses for the hybrid systems with various structural configurations. The associated reliability indices and failure probabilities were calculated by two reliability methods (i.e., fragility analysis and response surface method). Both methods yielded similar estimations of failure probabilities. This study indicated the greatly improved seismic performance of the steel-timber hybrid shear wall systems with stronger infill wood shear walls. From a probabilistic perspective, the presented results give some insights on quantifying the seismic performance of the hybrid system under different seismic hazard levels. The reliability-based approaches also serve as efficient tools to assess the performance-based seismic design methodology and calibration of relative code provisions for the proposed steel-timber hybrid shear wall systems.

Fragility-based performance evaluation of mid-rise reinforced concrete frames in near field and far field earthquakes

  • Ansari, Mokhtar;Safiey, Amir;Abbasi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.751-763
    • /
    • 2020
  • Available records of recent earthquakes show that near-field earthquakes have different characteristics than far-field earthquakes. In general, most of these unique characteristics of near-fault records can be attributed to their forward directivity. This phenomenon causes the records of ground motion normal to the fault to entail pulses with long periods in the velocity time history. The energy of the earthquake is almost accumulated in these pulses causing large displacements and, accordingly, severe damages in the building. Damage to structures caused by past earthquakes raises the need to assess the chance of future earthquake damage. There are a variety of methods to evaluate building seismic vulnerabilities with different computational cost and accuracy. In the meantime, fragility curves, which defines the possibility of structural damage as a function of ground motion characteristics and design parameters, are more common. These curves express the percentage of probability that the structural response will exceed the allowable performance limit at different seismic intensities. This study aims to obtain the fragility curve for low- and mid-rise structures of reinforced concrete moment frames by incremental dynamic analysis (IDA). These frames were exposed to an ensemble of 18 ground motions (nine records near-faults and nine records far-faults). Finally, after the analysis, their fragility curves are obtained using the limit states provided by HAZUS-MH 2.1. The result shows the near-fault earthquakes can drastically influence the fragility curves of the 6-story building while it has a minimal impact on those of the 3-story building.

Seismic Risk Analysis of Track-on-Steel Plate Girder Railway Bridges (무도상 강판형 철도교의 지진 위험도 해석)

  • Park, Joo Nam;Choi, Eun Soo;Kim, Sung Il;Cho, Sung Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.45-53
    • /
    • 2009
  • More than 40% of railway bridges on the conventional lines in Korea consist of track-on-steel plate girder (TOSPG) bridges. This type of bridge is typically designed without considering seismic loadings, as most of them were built before 1970. The seismic performance of this particular type of bridge could be upgraded through various seismic retrofit schemes, and seismic risk assessment could play a key role in decision-making on the level of the seismic retrofit. This study performed a seismic risk assessment of TOSPG bridges in Korea. The seismic damage of several crucial components of TOSPG bridges--fixed bearings, free bearings, and piers--were probabilistically estimated, and their seismic fragility curves were developed. The probability that the components would exceed their predefined limit states was also calculated by combining the fragility curves and the seismic hazard function. The analysis showed that the piers of TOSPG bridges, which are made of plain concrete without rebars, have relatively low risk against seismic loadings in Korea. This is because the mass of the superstructures of TOSPG bridges is relatively small, and hence, the seismic loading being transferred to the piers is minimal. The line-type bearings typically used for TOSPG bridges, however, are exposed to a degree of seismic risk. Among the bearings, the probability of the free-end bearings and the fixed-end bearings exceeding the slight damage state in 50 years was found to be 12.78% and 4.23%, respectively. The gap between these probability values lessened towards more serious damage states. This study could effectively provide an engineering background for decision-making activities on the seismic retrofit of railway bridges.

Effects of curvature radius on vulnerability of curved bridges subjected to near and far-field strong ground motions

  • Naseri, Ali;Roshan, Alireza MirzaGoltabar;Pahlavan, Hossein;Amiri, Gholamreza Ghodrati
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.367-392
    • /
    • 2020
  • The specific characteristics of near-field earthquake records can lead to different dynamic responses of bridges compared to far-field records. However, the effect of near-field strong ground motion has often been neglected in the seismic performance assessment of the bridges. Furthermore, damage to horizontally curved multi-frame RC box-girder bridges in the past earthquakes has intensified the potential of seismic vulnerability of these structures due to their distinctive dynamic behavior. Based on the nonlinear time history analyses in OpenSEES, this article, assesses the effects of near-field versus far-field earthquakes on the seismic performance of horizontally curved multi-frame RC box-girder bridges by accounting the vertical component of the earthquake records. Analytical seismic fragility curves have been derived thru considering uncertainties in the earthquake records, material and geometric properties of bridges. The findings indicate that near-field effects reasonably increase the seismic vulnerability in this bridge sub-class. The results pave the way for future regional risk assessments regarding the importance of either including or excluding near-field effects on the seismic performance of horizontally curved bridges.

Revaluation of Inelastic Structural Response Factor for Seismic Fragility Evaluation of Equipment (기기의 지진취약도 평가를 위한 구조물 비탄성구조응답계수의 재평가)

  • Park, Junhee;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • There are a lot of equipment related to safety and electric power production in nuclear power plants. The structure and equipment in NPPs were generally designed considering a high safety factor to remain in the elastic zone under earthquake load. However it is needed to revaluate the seismic capacity of the structure and equipment as the magnitude of earthquake was recently increased. In this study the floor response due to the nonlinear behaviors of structure was analyzed and the inelastic structural response factor was calculated by the nonlinear time history analysis. The inelastic structural response factor was calculated by the EPRI method and the nonlinear analysis method to realistically evaluate the seismic fragility for the equipment. According to the analysis result, it was represented that the inelastic structural response factor was affected by the natural frequency of equipment, the location of equipment and the dynamic property of structure.