• Title/Summary/Keyword: seismic fragility assessment

Search Result 181, Processing Time 0.021 seconds

Seismic Fragility Assessment of Ordinary RC Shear Walls Designed with a Nonlinear Dynamic Analysis (비선형 동적해석에 의해 내진설계된 철근콘크리트 보통 전단벽의 지진취약도 분석)

  • Jeon, Seong-Ha;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.169-181
    • /
    • 2019
  • Seismic performance of ordinary reinforced concrete shear wall systems commonly used in high-rise residential buildings is evaluated. Three types of shear walls exceeding 60m in height are designed by performance-based seismic design. Then, incremental dynamic analysis is performed collapse probability is assessed in accordance with the procedure of FEMA P695. As a result, story drift, plastic rotation, and compressive strain are observed to be major failure modes, but shear failure occur little. Collapse probability and collapse margin ratio of performance groups do not meet requirement of FEMA P695. It is observed that critical wall elements fail due to excessive compressive strain. Therefore, the compressive strain of concrete at the boundary area of the shear wall needs to be evaluated with more conservative acceptance criteria.

Rapid seismic vulnerability assessment by new regression-based demand and collapse models for steel moment frames

  • Kia, M.;Banazadeh, M.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.203-214
    • /
    • 2018
  • Predictive demand and collapse fragility functions are two essential components of the probabilistic seismic demand analysis that are commonly developed based on statistics with enormous, costly and time consuming data gathering. Although this approach might be justified for research purposes, it is not appealing for practical applications because of its computational cost. Thus, in this paper, Bayesian regression-based demand and collapse models are proposed to eliminate the need of time-consuming analyses. The demand model developed in the form of linear equation predicts overall maximum inter-story drift of the lowto mid-rise regular steel moment resisting frames (SMRFs), while the collapse model mathematically expressed by lognormal cumulative distribution function provides collapse occurrence probability for a given spectral acceleration at the fundamental period of the structure. Next, as an application, the proposed demand and collapse functions are implemented in a seismic fragility analysis to develop fragility and consequently seismic demand curves of three example buildings. The accuracy provided by utilization of the proposed models, with considering computation reduction, are compared with those directly obtained from Incremental Dynamic analysis, which is a computer-intensive procedure.

Seismic Fragility Analysis based on Material Uncertainties of I-Shape Curved Steel Girder Bridge under Gyeongju Earthquake (강재 재료 불확실성을 고려한 I형 곡선 거더 교량의 경주 지진 기반 지진 취약도 분석)

  • Jeon, Juntai;Ju, Bu-Seog;Son, Ho-Young
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.747-754
    • /
    • 2021
  • Purpose: Seismic safety evaluation of a curved bridge must be performed since the curved bridges exhibit the complex behavior rather than the straight bridges, due to geometrical characteristics. In order to conduct the probabilistic seismic assessment of the curved bridge, Seismic fragility evaluation was performed using the uncertainty of the steel material properties of a curved bridge girde, in this study. Method: The finite element (FE) model using ABAQUS platform of the curved bridge girder was constructed, and the statistical parameters of steel materials presented in previous studies were used. 100 steel material models were sampled using the Latin Hypercube Sampling method. As an input ground motion in this study, seismic fragility evaluation was performed by the normalized scale of the Gyeongju earthquake to 0.2g, 0.5g, 0.8g, 1.2g, and 1.5g. Result: As a result of the seismic fragility evaluation of the curved girder, it was found that there was no failure up to 0.03g corresponding to the limit state of allowable stress design, but the failure was started from 0.11g associated with using limit state design. Conclusion: In this study, seismic fragility evaluation was performed considering steel materials uncertainties. Further it must be considered the seismic fragility of the curved bridge using both the uncertainties of input motions and material properties.

Seismic Vulnerability Assessment of RC Frame Structures Using 3D Analytical Models (3차원 해석 모델을 이용한 RC 프레임 구조물의 지진 취약도 평가)

  • Moon, Do-Soo;Lee, Young-Joo;Lee, Sangmok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.724-731
    • /
    • 2016
  • As the structural damage caused by earthquakes has been gradually increasing, estimating the seismic fragility of structures has become essential for earthquake preparation. Seismic fragility curves are widely used as a probabilistic indicator of structural safety against earthquakes, and many researchers have made efforts to develop them in a more accurate and effective manner. However, most of the previous research studies used simplified 2D analytical models when deriving fragility curves, mainly to reduce the numerical simulation time; however, in many cases 2D models are inadequate to accurately evaluate the seismic behavior of a structure and its seismic vulnerability. Thus, this study provides a way to derive more accurate, but still effective, seismic fragility curves by using 3D analytical models. In this method, the reliability analysis software, FERUM, is integrated with the structural analysis software, ZEUS-NL, enabling the automatic exchange of data between these two software packages, and the first order reliability method (FORM), which is not a sampling-based method, is utilized to calculate the structural failure probabilities. These tools make it possible to conduct structural reliability analyses effectively even with 3D models. By using the proposed method, this study conducted a seismic vulnerability assessment of RC frame structures with their 3D analytical models.

Site classes effect on seismic vulnerability evaluation of RC precast industrial buildings

  • Yesilyurt, Ali;Zulfikar, Abdullah C.;Tuzun, Cuneyt
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.627-639
    • /
    • 2021
  • Fragility curves are being more significant as a useful tool for evaluating the relationship between the earthquake intensity measure and the effects of the engineering demand parameter on the buildings. In this paper, the effect of different site conditions on the vulnerability of the structures was examined through the fragility curves taking into account different strength capacities of the precast columns. Thus, typical existing single-story precast RC industrial buildings which were built in Turkey after the year 2000 were examined. The fragility curves for the three typical existing industrial structures were derived from an analytical approach by performing non-linear dynamic analyses considering three different soil conditions. The Park and Ang damage index was used in order to determine the damage level of the members. The spectral acceleration (Sa) was used as the ground motion parameter in the fragility curves. The results indicate that the fragility curves were derived for the structures vary depending on the site conditions. The damage probability of exceedance values increased from stiff site to soft site for any Sa value. This difference increases in long period in examined buildings. In addition, earthquake demand values were calculated by considering the buildings and site conditions, and the effect of the site class on the building damage was evaluated by considering the Mean Damage Ratio parameter (MDR). Achieving fragility curves and MDR curves as a function of spectral acceleration enables a quick and practical risk assessment in existing buildings.

Fragility functions for eccentrically braced steel frame structures

  • O'Reilly, Gerard J.;Sullivan, Timothy J.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.367-388
    • /
    • 2016
  • Eccentrically braced frames (EBFs) represent an attractive lateral load resisting steel system to be used in areas of high seismicity. In order to assess the likely damage for a given intensity of ground shaking, fragility functions can be used to identify the probability of exceeding a certain damage limit-state, given a certain response of a structure. This paper focuses on developing a set of fragility functions for EBF structures, considering that damage can be directly linked to the interstorey drift demand at each storey. This is done by performing a Monte Carlo Simulation of an analytical expression for the drift capacity of an EBF, where each term of the expression relies on either experimental testing results or mechanics-based reasoning. The analysis provides a set of fragility functions that can be used for three damage limit-states: concrete slab repair, damage requiring heat straightening of the link and damage requiring link replacement. Depending on the level of detail known about the EBF structure, in terms of its link section size, link length and storey number within a structure, the resulting fragility function can be refined and its associated dispersion reduced. This is done by using an analytical expression to estimate the median value of interstorey drift, which can be used in conjunction with an informed assumption of dispersion, or alternatively by using a MATLAB based tool that calculates the median and dispersion for each damage limit-state for a given set of user specified inputs about the EBF. However, a set of general fragility functions is also provided to enable quick assessment of the seismic performance of EBF structures at a regional scale.

Earthquake risk assessment of seismically isolated extradosed bridges with lead rubber bearings

  • Kim, Dookie;Yi, Jin-Hak;Seo, Hyeong-Yeol;Chang, Chunho
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.689-707
    • /
    • 2008
  • This study presents a method to evaluate the seismic risk of an extradosed bridge with seismic isolators of lead rubber bearings (LRBs), and also to show the effectiveness of the LRB isolators on the extradosed bridge, which is one of the relatively flexible and lightly damped structures in terms of seismic risk. Initially, the seismic vulnerability of a structure is evaluated, and then the seismic hazard of a specific site is rated using an earthquake data set and seismic hazard maps in Korea. Then, the seismic risk of the structure is assessed. The nonlinear seismic analyses are carried out to consider plastic deformation of bridge columns and the nonlinear characteristics of soil foundation. To describe the nonlinear behaviour of a column, the ductility demand is adopted, and the moment-curvature relation of a column is assumed to be bilinear hysteretic. The fragility curves are represented as a log-normal distribution function for column damage, movement of superstructure, and cable yielding. And the seismic hazard at a specific site is estimated using the available seismic hazard maps. The results show that in seismically-isolated extradosed bridges under earthquakes, the effectiveness of the isolators is much more noticeable in the columns than the cables and girders.

Seismic evaluation of self-centering energy dissipating braces using fragility curves

  • Kharrazi, Hossein;Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.679-693
    • /
    • 2020
  • This paper investigates the seismic response of buildings equipped with Self-Centering Energy Dissipating (SCED) braces. Two-dimensional models of 3, 6, 12 and 16-story SCED buildings considering both material and geometric nonlinearities are investigated by carrying out pushover and nonlinear time-history analyses. The response indicators of the buildings are studied for weight-scaled ground motions to represent the Design Basis Earthquake (DBE) level and the Maximum Considered Earthquake (MCE) event. The fragility curves of the buildings for two Immediate Occupancy (IO) and Life Safety (LS) performance levels are developed using Incremental Dynamic Analysis (IDA). Results of the nonlinear response history analyses indicate that the maximum inter-story drift occurs at the taller buildings. The mean peak inter-story drift is less than 2% in both hazard levels. High floor acceleration peaks are observed in all the SCED frames regardless of the building height. The overall ductility and ductility demand increase when the number of stories reduces. The results also showed the residual displacement is negligible for all of case study buildings. The 3 and 6-story buildings exhibit desirable performance in IO and LS performance levels according to fragility curves results, while 12 and 16-story frames show poor performance especially in IO level. The results indicated the SCED braces performance is generally better in lower-rise buildings.

Fragility Analysis for Evaluation and Comparison of Seismic Performance of Building Structures (취약도 해석을 통한 빌딩구조물의 내진성능 비교 및 평가)

  • Park, Joo-Nam;Choi, Eun-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.11-21
    • /
    • 2007
  • Potential damage and losses associated with structural systems caused by earthquake can be reduced by application of seismic design to the structures. Because the building cost required for seismic design is generally higher than the cost for non-seismic design, the application of seismic design must be justified considering both seismic performance and cost. This paper presents a risk-based fiamework for evaluation and comparison of seismic performance of structures such that necessary data can be supplied for decision making on seismic design. Seismic fragility curve is utilized for seismic risk assessment of structures, and the process for decision analysis on adaptation of seismic design is presented based on the equivalent cost model.

Seismic vulnerability assessment of existing private RC constructions in northern Algeria

  • Belhamdi, Nourredine;Kibboua, Abderrahmane;Tahakourt, Abdelkader
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.25-38
    • /
    • 2022
  • The RC private constructions represent a large part of the housing stock in the north part of Algeria. For various reasons, they are mostly built without any seismic considerations and their seismic vulnerability remains unknown for different levels of seismic intensity possible in the region. To support future seismic risk mitigation efforts in northern Algeria, this document assesses the seismic vulnerability of typical private RC constructions built after the Boumerdes earthquake (May 21, 2003) without considering existing seismic regulation, through the development of analytical fragility curves. The fragility curves are developed for four representative RC frames in terms of slight, moderate, extensive, and complete damage states suggested in HAZUS-MH 2.1, using nonlinear time history analyses. The numerical simulation of the nonlinear seismic response of the structures is performed using the SeismoStruct software. An original intensity measure (IM) is proposed and used in this study. It is the zone acceleration coefficient "A", through which the seismic hazard level is represented in the Algerian Seismic Regulations. The efficiency, practicality, and proficiency of the choice of IM are demonstrated. Incremental dynamic analyses are conducted under fifteen ground motion accelerograms compatible with the elastic target spectrum of the Algerian Seismic Regulations. In order to cover all the seismic zones of northern Algeria, the accelerograms are scaled from 0.1 to 2.5 in increments of 0.1. The results mainly indicate that private constructions built after the Boumerdes earthquake in the moderate and high seismic zones with four (04) or more storeys are highly vulnerable.