• Title/Summary/Keyword: seismic failure characteristics

Search Result 135, Processing Time 0.017 seconds

The Earthquake Response Characteristics and Seismic Safety Evaluation of Steel Cable Stayed Bridges (강사장교의 지진응답특성 및 내진 안전성 평가)

  • Han, Sung Ho;Shin, Jae Chul;Choi, Jin Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.435-454
    • /
    • 2007
  • In this study, we demonstrated the characteristics of the near-fault ground motion thatwas not considered in the domestic seismic design code and how the effect of the near-fault ground motion affects the response of cable-stayed bridges. Afterselecting the actual measurement records of the typical near- and far-fault ground motion, the characteristics of ground motion is analyzed using the elastic and inelastic response spectrum. Analyzing the response regarding the earthquake's characteristics on cable-stayed bridges by the typical three-type cable-stayed bridges and the actual cable-stayed bridge, the characteristics of responses about main members are compared and analyzed. Moreover,reliability analysis is accomplished using the results of the seismic response analysis, and the seismic safety of the cable-stayed bridges is evaluated quantitatively as a reliability index and probability of failure. According to the results of the response spectrum, the earthquake response analysis and the reliability analysis, because the effect of the near fault ground motion against the response of cable-stayed bridges is different from the effect of the existing far-fault ground motion, it should be considered as an important factor when designing cable-stayed bridges.

A Study on Seismic Behavior of Space Frame Bridge Using Three-Dimensional Nonlinear Dynamic Analysis (3차원 비선형 동적해석을 이용한 입체라멘교의 지진거동특성에 관한 연구)

  • 김익현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.45-51
    • /
    • 2002
  • The characteristics of nonlinear seismic behavior and failure mechanism of RC space frame in railroad viaducts have been studied by the numerical analysis in time domain. The structure concerned is modeled in 3 dimensional extent and the RC frame elements consisting of fibers are employed for the columns. The fibers are characterized as RC zone and PC one to distinguish the different energy release after cracking resulted from the bond characteristic between concrete and re-bar. Due to the deviation of the mass center and the stiffness center of the entire structure the complex behavior is shown under seismic actions. The excessive shear force is concentrated on the column beside flexible one relatively, which leads to the failure of bridge concerned.

Seismic behavior of T-shaped steel reinforced high strength concrete short-limb shear walls under low cyclic reversed loading

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Su, Yisheng
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.681-701
    • /
    • 2016
  • This paper presents an experimental study of six steel reinforced high strength concrete T-shaped short-limb shear walls configured with T-shaped steel truss under low cyclic reversed loading. Considering different categories of ratios of wall limb height to thickness, shear/span ratios, axial compression ratios and stirrup reinforcement ratios were selected to investigate the seismic behavior (strength, stiffness, energy dissipation capacity, ductility and deformation characteristics) of all the specimens. Two different failure modes were observed during the tests, including the flexural-shear failure for specimens with large shear/span ratio and the shear-diagonal compressive failure for specimens with small shear/span ratio. On the basis of requirement of Chinese seismic code, the deformation performance for all the specimens could not meet the level of 'three' fortification goals. Recommendations for improving the structural deformation capacity of T-shaped steel reinforced high strength concrete short-limb shear wall were proposed. Based on the experimental observations, the mechanical analysis models for concrete cracking strength and shear strength were derived using the equivalence principle and superposition theory, respectively. As a result, the proposed method in this paper was verified by the test results, and the experimental results agreed well with the proposed model.

Fundamental aspects on the seismic vulnerability of ancient masonry towers and retrofitting techniques

  • Preciado, Adolfo;Bartoli, Gianni;Budelmann, Harald
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.339-352
    • /
    • 2015
  • Ancient masonry towers constitute a relevant part of the cultural heritage of humanity. Their earthquake protection is a topic of great concern among researchers due to the strong damage suffered by these brittle and massive structures through the history. The identification of the seismic behavior and failure of towers under seismic loading is complex. This strongly depends on many factors such as soil characteristics, geometry, mechanical properties of masonry and heavy mass, as well as the earthquake frequency content. A deep understanding of these aspects is the key for the correct seismic vulnerability evaluation of towers and to design the most suitable retrofitting measure. Recent tendencies on the seismic retrofitting of historical structures by means of prestressing are related to the use of smart materials. The most famous cases of application of prestressing in towers were discussed. Compared to horizontal prestressing, vertical post-tensioning is aimed at improving the seismic behavior of towers by reducing damage with the application of an overall distribution of compressive stresses at key locations.

Pseudo-dynamic and cyclic loading tests on a steel-concrete vertical hybrid structure

  • Wang, Bo;Wu, Tao;Dai, Huijuan;Bai, Guoliang;Wu, Jian
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.399-409
    • /
    • 2019
  • This paper presents the experimental investigations on the seismic performance of a peculiar steel-concrete vertical hybrid structural system referred to as steel truss-RC tubular column hybrid structure. It is typically applied as the supporting structural system to house air-cooled condensers in thermal power plants (TPPs). Firstly, pseudo-dynamic tests (PDTs) are performed on a scaled substructure to investigate the seismic performance of this hybrid structure under different hazard levels. The deformation performance, deterioration behavior and energy dissipation characteristics are analyzed. Then, a cyclic loading test is conducted after the final loading case of PDTs to verify the ultimate seismic resistant capacity of this hybrid structure. Finally, the failure mechanism is discussed through mechanical analysis based on the test results. The research results indicate that the steel truss-RC tubular column hybrid structure is an anti-seismic structural system with single-fortification line. RC tubular columns are the main energy dissipated components. The truss-to-column connections are the structural weak parts. In general, it has good ductile performance to satisfy the seismic design requirements in high-intensity earthquake regions.

Experimental Study of Ductility and Strength Enhancement for RC Columns Retrofitted with Several Types of Aramid Reinforcements (아라미드계 섬유 보강을 통한 RC기둥의 연성과 강도 증진에 대한 실험 연구)

  • Lee, Gayoon;Lee, Dong-Young;Park, Minsoo;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.171-180
    • /
    • 2023
  • This study proposed a seismic reinforcement of RC columns with non-seismic details, a fiber reinforcement method of aramid sheets and MLCP (high elasticity aromatic polyester fiber material) with different characteristics, and 4 full-size column specimens and conducted experiments. The results show that a non-seismic specimen (RC-Orig) rapidly lost its load-bearing capacity after reaching the maximum load, and shear failure occurred. The RC column reinforced with three types of aramid did not show an apparent increase in strength compared to the unreinforced specimen but showed a ductile behavior supporting the load while receiving a lateral displacement at least 1.57 to 1.95 times higher than the unreinforced specimen. The fracture mode of the specimen, according to the application of lateral load, also changed from shear to ductile fracture through aramid-based reinforcement. In addition, when examining the energy dissipation ability of the reinforced specimens, a ductile behavior dissipating seismic energy performed 4 times greater and more stably than the existing specimens.

The Influence of Lap Splice of Longitudinal Bars in the Plstic Hinge Zone on the Nonlinear Behavior Characteristics of RC Piers and New Seismic Detailing Concept in Moderate Seismicity Region (소성힌지 영역의 주철근 겹이음에 의한 RC교각의 비선형 거동특성 및 중약진지역의 내진설계 개선방향)

  • 장승필
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.335-340
    • /
    • 2000
  • The influence of lap splice of longitudinal bars in the plastic hinge zone on the nonlinear behavior characteristics of RC piers has been investigated through the scale model tests. The seismic performance of bridge piers with lap splice is found to be insufficient due to the premature bond failure. On the other hand it is confirmed that the preventing lap splice in the plastic hinge zone enhance the seismic performance considerably even without the seismic details of transverse reinforcements. Bases on these experimental results new seismic detailing concept appropriate to moderate seismicity region has been proposed.

  • PDF

Seismic behavior of non-seismically designed eccentric reinforced concrete beam-column joints

  • Liu, Ying;Wong, Simon H.F.;Zhang, Hexin;Kuang, J.S.;Lee, Pokman;Kwong, Winghei
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.613-625
    • /
    • 2021
  • Non-seismically designed eccentric reinforced concrete beam-column joints were extensively used in existing reinforced concrete frame buildings, which were found to be vulnerable to seismic action in many incidences. To provide a fundamental understanding of the seismic performance and failure mechanism of the joints, three 2/3-scale exterior beam-column joints with non-seismically designed details were cast and tested under reversed cyclic loads simulating earthquake excitation. In this investigation, particular emphasis was given on the effects of the eccentricity between the centerlines of the beam and the column. It is shown that the eccentricity had significant effects on the damage characteristics, shear strength, and displacement ductility of the specimens. In addition, shear deformation and the strain of joint hoops were found to concentrate on the eccentric face of the joint. The results demonstrated that the specimen with an eccentricity of 1/4 column width failed in a brittle manner with premature joint shear failure, while the other specimens with less or no eccentricity failed in a ductile manner with joint shear failure after beam flexural yielding. Test results are compared with those predicted by three seismic design codes and two non-seismic design codes. In general, the codes do not accurately predict the shear strength of the eccentric joints with non-seismic details.

Seismic behavior of reinforced concrete T-shaped columns under compression-bending-shear and torsion

  • Ping, Chen Zong;Weiwei, Su;Yang, Yang
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.431-444
    • /
    • 2021
  • T-shaped column is usually used as side column in buildings, which is one of the weak members in structural system. This paper presented a quasi-static cyclic loading experiment of six specimens of reinforced concrete (RC) T-shaped columns under compression-flexure-shear-torsion combined loadings to investigate the effect in the ratio of torsion to moment (T/M) and axial compression ratio (n) and height-thickness ratio of flange plate (φ) on their seismic performance. Based on the test results, the failure characteristics, hysteretic curves, ductility, energy dissipation, stiffness degradation and strength degradation were analyzed. The results show that the failure characteristics of RC T-shaped columns mainly depend on the ratio of torsion to moment, which can be divided into bending failure, bending-torsion failure and shear-torsion failure. With the increase of T/M ratio, the torsion ductility coefficient increased, and in a suitable range, the torsion and horizontal displacement ductility coefficient of RC T-shaped columns could be effectively improved with the increase of axial compression ratio and the decrease of height-thickness ratio of flange plate. Besides, the energy dissipation capacity of the specimens mainly depended on the bending and shear energy dissipation capacity. On the other hand, the increase of axial compression ratio and the ratio of torsion to moment could accelerate the torsional and bending stiffness degradation of RC T-shaped columns. Moreover, the degradation coefficient of torsion strength was between 0.80 and 0.98, and that of bending strength was between 0.75 and 1.00.

A novel risk assessment approach for data center structures

  • Cicek, Kubilay;Sari, Ali
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.471-484
    • /
    • 2020
  • Previous earthquakes show that, structural safety evaluations should include the evaluation of nonstructural components. Failure of nonstructural components can affect the operational capacity of critical facilities, such as hospitals and fire stations, which can cause an increase in number of deaths. Additionally, failure of nonstructural components may result in economic, architectural, and historical losses of community. Accelerations and random vibrations must be under the predefined limitations in structures with high technological equipment, data centers in this case. Failure of server equipment and anchored server racks are investigated in this study. A probabilistic study is completed for a low-rise rigid sample structure. The structure is investigated in two versions, (i) conventional fixed-based structure and (ii) with a base isolation system. Seismic hazard assessment is completed for the selected site. Monte Carlo simulations are generated with selected parameters. Uncertainties in both structural parameters and mechanical properties of isolation system are included in simulations. Anchorage failure and vibration failures are investigated. Different methods to generate fragility curves are used. The site-specific annual hazard curve is used to generate risk curves for two different structures. A risk matrix is proposed for the design of data centers. Results show that base isolation systems reduce the failure probability significantly in higher floors. It was also understood that, base isolation systems are highly sensitive to earthquake characteristics rather than variability in structural and mechanical properties, in terms of accelerations. Another outcome is that code-provided anchorage failure limitations are more vulnerable than the random vibration failure limitations of server equipment.