• Title/Summary/Keyword: seismic facies

Search Result 41, Processing Time 0.023 seconds

Origin and Distribution of Cut and Fill Structures in the Southwestern Margin of Ulleung Basin, East Sea (동해 울릉분지 남서주변부에 발달하는 침식충전구조의 기원 및 분포)

  • Park, Yong Joon;Kang, Nyeon Keon;Yi, Bo Yeon;Yoo, Dong Geun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.39-53
    • /
    • 2015
  • Analysis of multi-channel seismic reflection profiles acquired from the southwestern margin of Ulleung Basin reveals that the cut and fill structures, which show U-shaped or V-shaped morphology, occur on variable size. The cut and fill structure mostly consists of fine-grained sediments on the well data and is characterized by transparent or semitransparent seismic facies on the seismic section. Such cut and fill structures dominantly occur in the syn-compressional megasequence (MSQ3), which was deposited during basin deformation of late Miocene, among the four megasequences of the study area. These cut and fill structures can be divided into three groups based on their size and formation time. The cut and fill structures of Group I were formed when Dolgorae structure was active, and occurred on a small scale. The cut and fill structures of group II were formed when both Dolgorae structure and Gorae V structure were active, and the number and size of those increased compared with group I. The cut and fill structures of group III were formed when Dolgorae structure was weaken gradually but Gorae V structure kept active, and the number and size of those decreased in comparison with group II. Consequently the cut and fill structures in the southwestern margin of Ulleung basin are interpreted as submarine canyon based on spatial distribution, size and fill sediment. They were controlled by the tectonic movement in response to basin closure and tectonic-induced sediment supply variation.

Distribution and Origin of Quaternary Mass Transport Deposit in the Ulleung Basin, East Sea (동해 울릉분지 제 4기 질량류 퇴적체 분포 및 기원)

  • Yi, Young-Mi;Yoo, Dong-Geun;Kang, Nyeon-Keon;Yi, Bo-Yeon
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.74-87
    • /
    • 2014
  • Analysis of multi-channel seismic reflection profiles collected from the Ulleung Basin reveals that the Quaternary sequence consists of four stratigraphic units separated by erosional unconformities. Individual stratigraphic unit includes eighteen mass transport deposits which are variable in geometric characteristics and spatial distribution. Each mass transport deposit on the seismic profile is acoustically characterized by chaotic or transparent seismic facies, and shows wedge or lens-shaped external geometry. The mass transport deposits, which comprise a succession of stacked wedges, mainly occur on the southern slope, and their thickness gradually decreases toward the basin plain. The time structure map of erosional unconformities shows that a tectonic-induced structural high and troughs toward the northwest and northeast are developed at the central part of the basin. Based on the isochron map, the mass transport deposits, originated from southern part of the study area, transported to the basin plain and can be divided into two groups by the structural high. Consequently, the mass transport deposits within the Quaternary sequence in the Ulleung Basin are largely controlled by the large amounts of sediment supply, dissociation of gas hydrate during the lowstands, and central structural high.

Seismic Stratigraphy of Upper Devonian Carbonates Area in Northern Alberta, Canada (캐나다 북부 알버타주 데본기 후기 탄산염암 지역의 탄성파 층서)

  • Lee, Min-Woo;Oh, Jin-Yong;Yun, Hye-Su
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.503-511
    • /
    • 2011
  • The Upper Devonian Grosmont Formation in northern Alberta, Canada, underlies the erosion unconformity that formed between the Cretaceous and Upper Devonian. The formation is divided into four units on the basis of intercalated shales and showing a typical shelf environment of shallowing-upward. It was possible to separate four units(LG~UG3), considering the seismic interpretation attributes of polarity, continuity, frequency/spacing and amplitude and showing the reflection characteristics of the medium-high amplitude, medium-low frequency, good continuity, and subparallel reflection events. The formation can be interpreted as shelf or platform, based on in-situ core data. However, it is difficult, only with reflection attributes and features, to recognize the boundaries and sedimentary environment of parasequence. Therefore, we try to interprete by parasequence set in this study. The parasequence set was formed by erosion unconformity with systems tracts. The erosion unconformity can be recognized by facies data and karst, erosional surface. Grosmont carbonate deposits ranging from platform and shelf to shelf slope are; by wedge-shaped strata of characterized by complex sigmoid-oblique progradational configurations, reflecting a depositional history of upbuilding and outbuilding in response to sea-level changes. Most of the sedimentary units is interpreted as platforms under regression and lowstand environments that support is evidences. In particular, shale layer at the basal part of the highstand systems tracts represents the regressive to lowstand of sea level.

Recent Geomorphological Changes and late Quaternary Depositional Sequence of Gwangyang Bay, southern coast of Korea (한반도 남해안 광양만의 최근 지형변화 및 후기 제4기 퇴적층서 발달)

  • 최동림;현상민;이태희
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.1
    • /
    • pp.35-43
    • /
    • 2003
  • Recent geomorphological changes and late Quaternary depositional sequences of Gwangyang Bay are studied based on bathymetric maps, surface sediments, and seismic profiles. As a result of the reclamation of coastal area for an industrial complex construction, the coastline of Gwangyang Bay has rapidly been changed and the area of it has now been reduced by about 25 % in the last 30 years. In addition, the bottom topography is actively modified by dredging for navigation channels. In surfical sediment distribution, the western part of Gwangyang Bay is dominated by mud facies, whereas the eastern part of the Bay is dominated by sand-mud mixing facies. Depositional sequences above the basement are divided into two units: Unit I in upper layer and Unit II in lower one. These depositional units are unconformably bounded by middle reflector-M. Unit II, mostly occupying the channel areas, is interpreted as fluvial-origin deposits during sea-level lowstand. Unit I typically shows a progradational pattern from the Seomjin River mouth to the Yeosu Strait, which is interpreted as deltaic deposits supplied from the Seomjin River during the Holocene sea-level highstand. The shallow gas within the sediments Is widely distributed in most area, and locally exposed onto the sea-bed due to dredging.

Formation and Evolution of the Paleo-Seomjin River Incised-Valley System, Southern Coast of Korea: 1. Sequence Stratigraphy of Late Quaternary Sediments in Yosu Strait (한반도 남해안 고섬진강 절개곡 시스템의 형성과 진화: 1. 여수해협의 후기 제 4기층에 대한 순차층서)

  • Chun, Seung-Soo;Chang, Jin-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.142-151
    • /
    • 2001
  • Detailed interpretation of some high-resolution seismic profiles in Yosu Strait reveals that Late Quaternary deposits consist of three allostratigraphic units (UH, LH, PL) formed by fluvial and tidal controls. The top mud unit, UH, thins onshore, and overlies the backstepping modem Seomjin delta deposits, which is interpreted as a transgressive systems tract (757) related to Holocene relative sea-level rise. The unit LH below the unit UH is composed of delta, valley- and basin-fill facies. The delta facies (Unit $LH_1$) occurs only in Gwangyang Bay and shows two prograding sets retrogradationaly stacked, thus it is also interpreted as a transgressive systems tract(757). On the contrary, the valley- and basin-fill facies (Unit $LH_2$), interpreted as 757, occur between the units UH and PL (Pleistocene deposits) in Yosu Strait. The bounding surface between UH and $LH_2$ can be interpreted as a tidal ravinement surface on the basis of trends thinning toward inner bay and becoming young landward. Furthermore its geomorphological pattern is similar to that of recent tidal channels. This allostratigraphy in'ffsu Strait suggests that two 757 deposits (UH and $LH_2$), divided by tidal ravinement surface, have been formed in Yosu Strait, whereas in Gwangyang Bay backstepping delta deposits ($LH_1$) without tidal ravinement surface have been formed during Holocene sea-level rise. These characteristics indicate that different stacking patterns could be formed in these two areas according to different increasing rate of accommodation space caused by different geomorphology, sediment supply and tidal-current patterns even in the same period of Holocene sea-level rise.

  • PDF

Analysis of Hydrocarbon Trap in the Southwestern Margin of the Ulleung Basin, East Sea (동해 울릉분지 남서주변부의 탄화수소 트랩 분석)

  • Lee, Minwoo;Kang, Moo-Hee;Yoon, Youngho;Yi, Bo-Yeon;Kim, Kyong-O;Kim, Jinho;Park, Myong-ho;Lee, Keumsuk
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.301-312
    • /
    • 2015
  • A commercial gas field was found in the southwestern continental shelf of the Ulleung Basin, East Sea in the late 1990s. To develop additional gas field, an exploration well was drilled through the coarse infill of submarine canyon near the gas field, but it was uneconomic to develop hydrocarbons. Using newly acquired deep seismic reflection and previous well data, we have identified additional geological structure which has hydrocarbon potentials below submarine canyons in the southwestern margin of the basin. Based on the interpretation of the deep seismic reflection and well data, the sequences of the study area can be classified into the syn-rift megasequence(MS1), post-rift megasequence(MS2), syn-compressional megasequence(MS3), and post-compressional megasequence(MS4) in relation to the tectonic events. MS1, deposited simultaneously with the basin formation before the middle Miocene, is characterized by chaotic seismic facies with low- to moderate-amplitude and low frequency reflections. MS2 comprises laterally continuous, low- to moderate-amplitude reflections, showing progradational stacking patterns due to high rates of sediment supply during basin expansion in the middle Miocene. MS3 is mainly composed of continuous reflections with high amplitude and moderate- to high-frequency which are interpreted as coarse-grained sediments. The coarse-grained sediments of MS3 sequence is widely truncated by several submarine canyons which filled with fine-grained sediment of MS4 to form a stratigraphic trap of hydrocarbon. Therefore, the reservoir and seal of the hydrocarbon trap in the study area are coarse-grained sediment of MS3 and submarine canyon filled with fine-grained sediment of MS4, respectively. A flat-spot seismic anomaly, which may indicate the presence of hydrocarbon, is observed within the stratigraphic trap.

Stratigraphical Study on Tertiary System of Pohang Area Compared with Petrogeologies of Japan (포항(浦項)의 제삼기층(第三紀層)과 일본유전지질(日本油田地質)의 층위대비연구(層位對比硏究))

  • Chang, Seyong
    • Economic and Environmental Geology
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 1976
  • It is believed that geological survey, drilling and geophysical survey which was carried out on Tertiary deposits in Pohang is a valuable but through the studying of many Tertiary sediments in Japan discovered many questions on analysis of final report prepared by National geological survey. The main reason is: 1. The seismic sound velocity which have regulated in the final report prepared by geological survey for Tertiary deposits in Pohang was 1,500-2,000m/sec in spite of oil bearing sediments of same age in Japan are 2,000-3,800m/sec. These may means the requirement of reconsideration of seismic velocity for Tertiary deposits in Pohang and required to have a dipper drilling. 2. Stratigraphically, geophysically, and paleontologically, the Tertiary deposits in Pahang land area is similar with that of Nishiyama-Hunakawa formations of Akita oil field in Japan. Nishiyama-Hunakawa formation is the main oil bearing formation in Japan. 3. Those valcanic rock including andestitic rock and liparitic rock which have extensively distributed over either at land area or at sea bottom, assumed by geological survey as the base of Tertiary sediments. But in case of Japan many oil bearing deposits are in over laid by these kind of volcanic rock. Therefore a possible of same condition with Japan is presumable on Tertiary sediments in Pohang. 4. It is believed that the Tertiary sediments of land area in Pohang is the extension of offshore basin but is wandering that the final report submitted by geologic survey have not remain any word on report of ECAFE discribed so much problematics as followed: A. Although it was assumed that no great thickness exceeding 1,000 meters, or major structures would be encountered in the Tertiary offshore sequence, it was hoped that shallow hydrocarbon deposits might be found, because these sediment are lithologically similar to those of the same age in the producing area of the northwest Honshu region of Japan where hydrocarbon are extracted from depths of only 500 to 600 meters. B. Four possible hydrocarbon trap conditions are represented in the survey area: anticlinal folds, faults, pinch outs, along the igneous basement and lateral facies changes. C. Most of the prime possible reservoir area are beyond the 50 meter water depth mark, except for the structures in Yonil Bay. D. Despite the shallowness of the offshore basin, sufficient trap condition exist in the area to warrant further exploration for hydrocarbon. 5. All of the problems mentioned above have gave us a strong reasons to have us hesitating to make a final conclusion on Tertiary problems in Pohang, before to have a drill to a depth to 3,000 meters or more whatever it is the Tertiary or a Mesozoics below 1,000 meters.

  • PDF

Development of the Holocene Sediments in Gamak Bay of the South Sea, Korea (남해 가막만의 현생퇴적층 발달특성)

  • Kim, So Ra;Lee, Gwang Soo;Choi, Dong Lim;Kim, Dae Choul;Lee, Tae Hee;Seo, Young Kyo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.2
    • /
    • pp.131-146
    • /
    • 2014
  • High-resolution seismic profiles coupled with sediment sampling were analyzed to investigate the acoustic characters and distribution patterns of the late Holocene sediments in Gamak Bay of the South Sea, Korea. The mean grain size of surficial sediment lies around $6.3{\sim}9.7{\Phi}$. Sediments in the bay consist of silt and clay with progressive decrease toward the inner bay. The seismic sedimentary sequence overlying the acoustic basement can be divided into two sedimentary units (GB I and II) by a prominent mid-reflector (Maximum Flooding Surface; MFS). The acoustic basement occurs at the depth between 20 m and 40 m below the sea-level and deepens gradually southward. The GB I, mostly occupying the channel-fill, is characterized by reflection-free seismic facies. It can be formed as late Transgressive System Tract (TST), interpreted tidal environment deposits. MFS appears at the depth of about 15~28 m below the sea-level and is well defined by even and continuous reflectors on the seismic profile. The GB II overlying MFS is composed of acoustically transparent to semitransparent and parallel internal reflectors. GB II is interpreted as the Highstand System Tract (HST) probably deposited during the last 6,000 yrs when the sea level was close to the present level. Especially, it is though that the GB II was subdivided into two layers (GB II-a and II-b) by a HST-reflector and this was classified by wind, sea water flux, and tidal current.

Late Quaternary Sedimentation in the Yellow Sea off Baegryeong Island, Korea (한국 황해 백령도 주변해역 후 제4기 퇴적작용)

  • Cho, MinHee;Lee, Eunil;You, HakYoel;Kang, Nyen-Gun;Yoo, Dong-Geun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.145-153
    • /
    • 2013
  • High-resolution chirp profiles were analyzed to investigate the echo types of near-surface sediments in the Yellow Sea off the Baegryeong Island. On the basis of seafloor morphology and subbottom echo characters, 7 echo types were identified. Flat seafloor with no internal reflectors or moderately to well-developed subbottom reflectors (echo type 1-1 and 1-2) is mainly distributed in the southern part of the study area. Flat seafloor with superposed wavy bedforms (echo type 1-3) is also distributed in the middle part. Mounded seafloor with either smooth surface or superposed bedforms (echo type 2-1, 2-2, and 2-3) occurs in the middle part of the study area. Irregular and eroded seafloor with no subbottom reflectors (echo type 3-1) is present in the northern part of the study area off the Baegryeong Island. According to the distribution pattern and sedimentary facies of echo types, depositional environments can be divided into three distinctive areas: (1) active erosional zone due to strong tidal currents in the northern part; (2) formation of tidal sand ridges in response to tidal currents associated with sea-level rise distributed in the middle part; and (3) transgressive sand sheets in the southern part. Such a depositional pattern, including 7 echo types, in this area reflects depositional process related to the sea-level rise and strong tidal currents during the Holocene transgression.

The Structural and Stratigraphic Evolution of Lake Tanganyika (아프리카 탕가니카호수의 구조 및 층서 진화 연구)

  • Shon, Howoong
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.67-77
    • /
    • 1997
  • Seismic data from Lake Tanganyika indicate a complex tectonic, structural, and stratigraphic history. The Lake Tanganyika rift consists of half grabens which tend to alternate dip-direction along the strike of the rift. Adjacent half-grabens are separated by distinct accommodation zones of strike-slip motion. These are areas of relatively high basement, and are classified into two distinct forms which depend on the map-view geometry of the border faults on either side of the accommodation zone. One type is the high-relief accommodation zone which is a fault bounded area of high basement with little subsidence or sediment accumulation. These high-relief areas probably formed very early in the rifting process. The second type is the low-relief accommodation zone which is a large, faulted anticlinal warp with considerable rift sediment accumulated over its axis. These low-relief features continue to develop as rifting processes. This structural configuration profoundly influences depositional processes in Lake Tanganyika. Not only does structures dictate where discrete basins and depocenters can exist, it also controls the distribution of sedimentary facies within basins, both in space and time. This is because rift shoulder topography controls regional drainage patterns and sediment access into the lake. Large fluvial and deltaic systems tend to enter the rift from the up-dip side of half-grabens or along the rift axis, while fans tend to enter from the border fault side.

  • PDF