• Title/Summary/Keyword: seismic effects

Search Result 1,131, Processing Time 0.023 seconds

Assessment of seismic parameters for 6 February 2023 Kahramanmaraş earthquakes

  • Bilal Balun
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.117-128
    • /
    • 2023
  • On February 6, 2023, Türkiye woke up with a strong ground motion felt in a wide geography. As a result of the Kahramanmaraş, Pazarcık and Elbistan earthquakes, which took place 9 hours apart, there was great destruction and loss of life. The 2023 Kahramanmaraş earthquakes occurred on active faults known to pose a high seismic hazard, but their effects were devastating. Seismic code spectra were investigated in Hatay, Adıyaman and Kahramanmaraş where destruction is high. The study mainly focuses on the investigation of ground motion parameters of 6 February Kahramanmaraş earthquakes and the correlation between ground motion parameters. In addition, earthquakes greater than Mw 5.0 that occurred in Türkiye were compared with certain seismic parameters. As in the strong ground motion studies, seismic energy parameters such as Arias intensity, characteristic intensity, cumulative absolute velocity and specific energy density were determined, especially considering the duration content of the earthquake. Based on the study, it was concluded that the structures were overloaded far beyond their normal design levels. This, coupled with significant vertical seismic components, is a contributing factor to the collapse of many buildings in the area. In the evaluation made on Arias intensity, much more energy (approximately ten times) emerged in Kahramanmaraş earthquakes compared to other Türkiye earthquakes. No good correlation was found between moment magnitude and peak ground accelerations, peak ground velocities, Arias intensities and ground motion durations in Türkiye earthquakes. Both high seismic components and long ground motion durations caused intense energy to be transferred to the structures. No strong correlation was found between ground motion durations and other seismic parameters. There is a strong positive correlation between PGA and seismic energy parameter AI. Kahramanmaraş earthquakes revealed that changes should be made in the Turkish seismic code to predict higher spectral acceleration values, especially in earthquake-prone regions in Türkiye.

Correlation of Seismic Loss Functions Based on Stories and Core Locations in Vertical-Irregular Structures (연층을 갖는 수직 비정형 건축물의 층수 및 코어 위치에 따른 지진손실함수 상관관계 분석)

  • Hahn, SangJin;Shim, JungEun;Jeong, MinJae;Cho, JaeHyun;Kim, JunHee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.149-158
    • /
    • 2024
  • Piloti-type structures with vertical irregularity are vulnerable to earthquakes due to the soft structure of the first story. Structural characteristics of buildings can significantly affect the seismic loss function, calculated based on seismic fragility, and therefore need to be considered. This study investigated the effects of the number of stories and core locations on the seismic loss function of piloti-type buildings in Korea. Twelve analytical models were developed considering two variations: three stories (4-story, 5-story, and 6-story) and four core locations (center core, x-eccentric core, y-eccentric core, and xy-eccentric core). The interstory drift ratio and peak floor acceleration were assessed through incremental dynamic analysis using 44 earthquake records, and seismic fragility was derived. Seismic loss functions were calculated and compared using the derived seismic fragility and repair cost ratio of each component. The results indicate that the seismic loss function increases with more stories and when the core is eccentrically located in the piloti-type structure model. Therefore, the uncertainty due to the number of stories and core location should be considered when deriving the seismic loss function of piloti-type structures.

Evaluation of Nonlinear Dynamic Behavior for Steel Moment Frame Structures Considering P-$\Delta$ Effects (P-$\Delta$ 효과를 고려한 철골 구조물의 비선형 동적거동 평가)

  • 최원호;이주완;이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.235-242
    • /
    • 2001
  • Inelastic seismic response of steel moment frame structures, which are usually quite gravity load and subject to large displacement under severe earthquake, may be severly influenced by the structure P-Δ effects. The P-Δ effect may have an important impact on the dynamic behavior of the structure in the nonlinear seismic analysis. In multi degree of freedom systems P-Δ effects may significantly affect only a subset of stories or a single story alone. Therefore, a story drift amplification of structure is happened by P-Δeffects and such nonlinear dynamic behaviors are very difficult to evaluate in the structures. In this study, two systems having different design methods of steel moment frame structures are investigated to evaluate the P-Δ effects due to gravity load. The plastic hinge formations, maximum rotational ductility demands, and energy distribution will be compared and evaluated following whether the P-Δ effects are considered or not. And design methods are proposed for the prevention of the instability of structures which due to the P-Δ effects.

  • PDF

Seismic response of concrete columns with nanofiber reinforced polymer layer

  • Motezaker, Mohsen;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.361-368
    • /
    • 2017
  • Seismic response of the concrete column covered by nanofiber reinforced polymer (NFRP) layer is investigated. The concrete column is studied in this paper. The column is modeled using sinusoidal shear deformation beam theory (SSDT). Mori-Tanaka model is used for obtaining the effective material properties of the NFRP layer considering agglomeration effects. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle, the motion equations are derived. Harmonic differential quadrature method (HDQM) along with Newmark method is utilized to obtain the dynamic response of the structure. The effects of different parameters such as NFRP layer, geometrical parameters of column, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure are shown. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure. In addition, using nanofibersas reinforcement leads a reduction in the maximum dynamic displacement of the structure.

The beneficial effects of beam web opening in seismic behavior of steel moment frames

  • Erfani, Saeed;Naseri, Ata Babazadeh;Akrami, Vahid
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.35-46
    • /
    • 2012
  • Implementation of openings in beams web has been introduced as an innovative method for improving seismic performance of steel moment frames. In this paper, several steel moment frames have been studied in order to evaluate the effect of openings in beams web. The beam sections with web opening have been modeled as a simplified super-element to be used in designing frames and to determine opening configurations. Finite element models of designed frames were generated and nonlinear static pushover analysis was conducted. The efficient location for openings along the beam length was discovered and the effects of beams with web openings on local and global behavioral characteristics of frames were discussed. Base on the results, seismic performance of steel moment frames was improved by creating openings in beams web, in terms of reduction in stress level of frame sensitive areas such as beam to column connections and panel zones.

Equations to evaluate fundamental period of vibration of buildings in seismic analysis

  • Sangamnerkar, Prakash;Dubey, S.K.
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.4
    • /
    • pp.351-364
    • /
    • 2017
  • In this study effects of various parameters like a number of bays, the stiffness of the structure along with the height of the structure was examined. The fundamental period of vibration T of the building is an important parameter for evaluation of seismic base shear. Empirical equations which are given in the Indian seismic code for the calculation of the fundamental period of a framed structure, primarily as a function of height, and do not consider the effect of number of bays and stiffness of the structure. Building periods predicted by these expressions are widely used in practice, although it has been observed that there is scope for further improvement in these equations since the height alone is inadequate to explain the period variability. The aim of this study is to find the effects of a number of bays in both the directions, the stiffness of the structure and propose a new period equation which incorporates a number of bays, plan area, stiffness along with the height of the structure.

Seismic Behavior Analysis of the Bridge Retrofitted by Restrainer (Restrainer로 보강된 교량시스템의 지진거동분석)

  • 김상효;마호성;이상우;원정훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.289-296
    • /
    • 2000
  • Dynamic responses of a bridge retrofitted with cable restrainers are examined under seismic excitations. A simplified and idealized mechanical model is developed to analyze the effects of the restrainers, which can consider the plastic behavior as well as the fracture of the cable. Using the proposed model, the effects of the stiffness and the clearance length of the restrainer upon the global bridge seismic behaviors are estimated. The changes of pounding forces, shear forces, and bending moments due to the application of restrainers are also investigated. The main effect of restrainers upon global bridge motions is found to reduce the relative distances between adjacent vibrations units. It is also found that the relative distances are decreased as the clearance length of the restrainer decreases and the stiffness of restrainer increases.

  • PDF

Investigation of wall flexibility effects on seismic behavior of cylindrical silos

  • Livaoglu, Ramazan;Durmus, Aysegul
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.159-172
    • /
    • 2015
  • This paper is concerned with effects of the wall flexibility on the seismic behavior of ground-supported cylindrical silos. It is a well-known fact that almost all analytical approximations in the literature to determine the dynamic pressure stemming from the bulk material assume silo structure as rigid. However, it is expected that the horizontal dynamic material pressures can be modified due to varying horizontal extensional stiffness of the bulk material which depends on the wall stiffness. In this study, finite element analyses were performed for six different slenderness ratios according to both rigid and flexible wall approximations. A three dimensional numerical model, taking into account bulk material-silo wall interaction, constituted by ANSYS commercial program was used. The findings obtained from the numerical analyses were discussed comparatively for rigid and flexible wall approximations in terms of the dynamic material pressure, equivalent base shear and bending moment. The numerical results clearly show that the wall flexibility may significantly affects the characteristics behavior of the reinforced concrete (RC) cylindrical silos and magnitudes of the responses under strong ground motions.

Seismic behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 1: Experimental study

  • Zhu, Y.;Su, R.K.L.;Zhou, F.L.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.149-172
    • /
    • 2007
  • An experimental study of five full-scale coupling beam specimens has been conducted to investigate the seismic behavior of strengthened RC coupling beams by bolted side steel plates using a reversed cyclic loading procedure. The strengthened coupling beams are fabricated with different plate thicknesses and shear connector arrangements to study their respective effects on load-carrying capacity, strength retention, stiffness degradation, deformation capacity, and energy dissipation ability. The study revealed that putting shear connectors along the span of coupling beams produces no significant improvement to the structural performance of the strengthened beams. Translational and rotational partial interactions of the shear connectors that would weaken the load-carrying capacity of the steel plates were observed and measured. The hierarchy of failure of concrete, steel plates, and shear connectors was identified. Furthermore, detailed effects of plate buckling and various arrangements of shear connectors on the post-peak behavior of the strengthened beams are discussed.