• Title/Summary/Keyword: seismic effect

Search Result 1,573, Processing Time 0.021 seconds

Analysis of the Effect of the Revised Ground Amplification Factor on the Macro Liquefaction Assessment Method (개정된 지반증폭계수의 Macro적 액상화 평가에 미치는 영향 분석)

  • Baek, Woo-Hyun;Choi, Jae-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.2
    • /
    • pp.5-15
    • /
    • 2020
  • The liquefaction phenomenon that occurred during the Pohang earthquake (ML=5.4) brought new awareness to the people about the risk of liquefaction caused by the earthquake. Liquefaction hazard maps with 2 km grid made in 2014 used more than 100,000 borehole data for the whole country, and regions without soil investigation data were produced using interpolation. In the mapping of macro liquefaction hazard for the whole country, the site amplification effect and the ground water level 0 m were considered. Recently, the Ministry of Public Administration and Security (2018) published a new site classification method and amplification coefficient of the common standard for seismic design. Therefore, it is necessary to rewrite the liquefaction hazard map reflecting the revised amplification coefficient. In this study, the results of site classification according to the average shear wave velocity in soils before and after revision were compared in the whole country. Also, liquefaction assessment results were compared in Gangseo-gu, Busan. At this time, two ground accelerations corresponding to the 500 and 1,000 years of return period and two ground water table, 5 m for the average condition and 0 m the extreme condition were applied. In the drawing of liquefaction hazard map, a 500 m grid was applied to secure a resolution higher than the previous 2 km grid. As a result, the ground conditions that were classified as SC and SD grounds based on the existing site classification standard were reclassified as S2, S3, and S4 through the revised site classification standard. Also, the result of the Liquefaction assessments with a return period of 500 years and 1,000 years resulted in a relatively overestimation of the LPI applied with the ground amplification factor before revision. And the results of this study have a great influence on the liquefaction assessment, which is the basis of the creation of the regional liquefaction hazard map using the amplification factor.

Study on the Dissolution of Sandstones in Gyeongsang Basin and the Calculation of Their Dissolution Coefficients under CO2 Injection Condition (이산화탄소 지중 주입에 의한 경상분지 사암의 용해반응 규명 및 용해 반응상수값 계산)

  • Kang, Hyunmin;Baek, Kyoungbae;Wang, Sookyun;Park, Jinyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.661-672
    • /
    • 2012
  • Lab scale experiments to investigate the dissolution reaction among supercritical $CO_2$-sandstone-groundwater by using sandstones from Gyeongsang basin were performed. High pressurized cell system (100 bar and $50^{\circ}C$) was designed to create supercritical $CO_2$ in the cell, simulating the sub-surface $CO_2$ storage site. The first-order dissolution coefficient ($k_d$) of the sandstone was calculated by measuring the change of the weight of thin section or the concentration of ions dissolved in groundwater at the reaction time intervals. For 30 days of the supercritical $CO_2$-sandstone-groundwater reaction, physical properties of sandstone cores in Gyeongsang basin were measured to investigate the effect of supercritical $CO_2$ on the sandstone. The weight change of sandstone cores was also measured to calculate the dissolution coefficient and the dissolution time of 1 g per unit area (1 $cm^2$) of each sandstone was quantitatively predicted. For the experiment using thin sections, mass of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased, suggesting that plagioclase and calcite of the sandstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites. 0.66% of the original thin sec-tion mass for the sandstone were dissolved after 30 days reaction. The average porosity for C sandstones was 8.183% and it increased to 8.789% after 30 days of the reaction. The average dry density, seismic velocity, and 1-D compression strength of sandstones decreased and these results were dependent on the porosity increase by the dissolution during the reaction. By using the first-order dissolution coefficient, the average time to dissolve 1 g of B and C sandstones per unit area (1 $cm^2$) was calculated as 1,532 years and 329 years, respectively. From results, it was investigated that the physical property change of sandstones at Gyeongsang basin would rapidly occur when the supercritical $CO_2$ was injected into $CO_2$ sequestration sites.

A Study on the Geophysical Characteristics and Geological Structure of the Northeastern Part of the Ulleung Basin in the East Sea (동해 울릉분지 북동부지역의 지구물리학적 특성 및 지구조 연구)

  • Kim, Chang-Hwan;Park, Chan-Hong
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.625-636
    • /
    • 2010
  • The geophysical characteristics and geological structure of the northeastern part of the Ulleung Basin were investigated from interpretation of geophysical data including gravity, magnetic, bathymetry data, and seismic data. Relative correction was applied to reduce errors between sets of gravity and magnetic data, obtained at different times and by different equipments. The northeastern margin of the Ulleung Basin is characterized by complicated morphology consisting of volcanic islands (Ulleungdo and Dokdo), the Dokdo seamounts, and a deep pathway (Korea Gap) with the maximum depth of -2500 m. Free-air anomalies generally reflect the topography effect. There are high anomalies over the volcanic islands and the Dokdo seamounts. Except local anomalous zones of volcanic edifices, the gradual increasing of the Bouguer anomalies from the Oki Bank toward the Ulleung Basin and the Korea Gap is related to higher mantle level and denser crust in the central of the Ulleung Basin. Complicated magnetic anomalies in the study area occur over volcanic islands and seamounts. The power spectrum analysis of the Bouguer anomalies indicates that the depth to the averaged Moho discontinuity is -16.1 km. The inversion of the Bouguer anomaly shows that the Moho depth under the Korea Gap is about -16~17 km and the Moho depths towards the Oki Bank and the northwestern part of Ulleung Island are gradually deeper. The inversion result suggests that the crust of the Ulleung Basin is thicker than normal oceanic crusts. The result of 20 gravity modeling is in good agreement with the results of the power spectrum analysis and the inversion of the Bouguer anomaly. Except the volcanic edifices, the main pattern of magnetization distribution shows lineation in NE-SW. The inversion results, the 2D gravity modeling, and the magnetization distribution support possible NE-SW spreading of the Ulleung Basin proposed by other papers.