• Title/Summary/Keyword: seismic earthquake response

Search Result 1,592, Processing Time 0.028 seconds

Numerical Study of PZ Strength Effects on Cyclic Seismic Performance of RBS Steel Moment Connections (패널존 강도가 RBS 철골모멘트접합부의 내진거동에 미치는 영향에 대한 수치해석적 연구)

  • Lee, Cheol-Ho;Kim, Jae-Hoon;Kim, So-Yeon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.180-190
    • /
    • 2006
  • Effects of panel zone (PZ) strength on cyclic seismic performance of the RBS connections was studied based on the validated finite element analysis. High-profile cyclic correlation of finite element model with the full-scale test results based on the material and geometric nonlinear post-buckling analysis was among the most significant consideration in this study. Numerical response results as affected by the panel zone strength reproduced the experimentally observed results quite reasonably. The finite element modeling capability of this study can be used to supplement or to replace in part the costly full-scale connection testing.

  • PDF

Semiactive Neuro-control for Seismically Excited Structure considering Dynamics of MR Damper (자기유변유체감쇠기의 동특성을 고려한 지진하중을 받는 구조물의 반능동 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.473-480
    • /
    • 2003
  • A new semiactive control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system adopts a clipped algorithm which induces the MR damper to generate approximately the desired force. The improved neuro-controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then by using the clipped algorithm the appropriate command voltage is selected in order to cause the MR damper to generate the desired control force. The simulation results show that the proposed semiactive neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semiactive control system using MR fluid dampers has many attractive features, such as bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semiactive neuro-control strategy using MR fluid dampers could be effective used for control seismically excited structures.

  • PDF

Seismic Performance Evaluation of Reinforced Concrete Columns Under Constant and Varying Axial Forces (일정 및 변동 축력을 받는 철근콘크리트 기둥의 내진성능 평가)

  • Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • This paper describes the seismic performance evaluation of reinforced concrete bridge columns under constant and varying axial forces. For this purpose, nine identical circular reinforced concrete columns were designed seismically by KIBSE (2021) and KCI (2021). A comparison of lateral forces with theoretical strength shows that the safety factor for columns under varying axial forces is less marginal than those under constant axial forces. In addition, columns under varying axial forces exhibit significant fluctuations in the hysteretic response due to continuously varying axial forces. This is particularly prominent when many varying axial force cycles within a specific lateral loading cycle increase. Moreover, the displacement ductility of columns under varying axial forces does not meet the code-specified required ductility in the range of varying axial forces. All varying axial forces affect columns' strength, stiffness, and displacement ductility. Therefore, axial force variation needs to be considered in the lateral strength evaluation of reinforced concrete bridge columns.

Effect of Hysteretic Characteristics on Inelastic Seismic Design Spectra (비탄성 설계스펙트럼에 대한 이력거동 특성의 영향)

  • 오영훈;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.207-214
    • /
    • 1997
  • Current seismic design code is based on the assumption that the designed structures would be behaved inelastically during a severe earthquake ground motion. For this reason, seismic design forces calculated by seismic codes are much lower than the forces generated by design earthquakes which makes structures responding elastically. Present procedures for calculating seismic design forces are based on the use of elastic spectra reduced by a strength reduction factors known as "response modificaion factor". The effect of hysteretic behavior, as well as maximum ductility ratio and period on the inelastic strength demand is investigated. Special emphasis is given to the effects of the hysteretic characteristics such as strength degradation or pinching. Results indicate that inelastic strength demands are strongly dependent on level of inelastic deformation, period and hysteretic behavior.

  • PDF

Numerical study on the effects of seismic torsional component on multistory buildings

  • Ouazir, Abderrahmane;Hadjadj, Asma;Benanane, Abdelkader
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • In this paper, the influence of the rotational component, about a vertical axis, of earthquake ground motion on the response of building structures subjected to seismic action is considered. The torsional component of ground motion is generated from the records of translational components. Torsional component of ground motion is then, together with translational components, applied in numerical linear dynamic analysis of different reinforced concrete framed structure of three stories buildings. In total, more than 40 numerical models were created and analyzed. The obtained results show clearly the dependence of the effects of the torsional seismic component on structural system and soil properties. Thus, the current approach in seismic codes of accounting for the effects of accidental torsion due to the torsional ground motion, by shifting the center of mass, should be reevaluated.

Assessment of seismic design coefficients for composite special moment frames with reinforced concrete columns and steel beams: Evaluation of code recommendations

  • Elmira Tavasoli Yousef Abadi;Mohammad T. Kazemi
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.643-658
    • /
    • 2024
  • The main aim of this study is to quantify the code seismic design coefficients of the RCS system, which consisted of reinforced concrete columns and steel beams, based on the FEMA P-695 methodology. The underlying intention is to evaluate the seismic performance of the RCS system at the system level rather than the connection level. A set of 24 archetype buildings with a various number of stories, beam span lengths, gravity load levels, and seismic load levels are selected and designed based on the prevailing code requirements. Nonlinear analytical models are developed and validated by experimental tests. The pushover and response history dynamic analyses are conducted to evaluate the required data in the performance quantification process. The results show that the design coefficients suggested by the code are acceptable. However, the level of conservatism is very high. Thus, it is possible to use a larger R-factor in the design process or make some relaxations in the design requirements related to this structural system.

Relocation of plastic hinge in exterior beam-column joints using inclined bars

  • P.Asha;R.Sundararajan;K.Kumar
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.317-329
    • /
    • 2024
  • Recent earthquakes have demonstrated that even when the beams and columns in a reinforced concrete frame remain intact, the integrity of the whole structure is undermined if the joint where these members connect fails. A good seismic performance of reinforced concrete frames depends on their ability to absorb seismic energy through inelastic deformations and to avoid a sudden development of collapse mechanism in event of a strong earthquake shaking. The primary objective of this investigation is to move the plastic hinge away from the beam-column joint region and hence reducing the damage to the joint region. In this research, the seismic performance of exterior beam-column joints with four types of confinement in joint region and inclined bars from column to beam is investigated experimentally. Control specimens without inclined bars and four types of confinement Square Hoop, Square Spiral, Circular Hoop and Circular Spiral were tested along with inclined bars were tested. Seismic performance was determined via load-deflection response, ductility, stiffness, energy dissipation, strain of beam reinforcement and crack pattern. Out of the four specimens with inclined bars, seismic performance of joint with Square Spiral confinement gave the best performance in terms of all parameters.

Investigation on seismic behavior of combined retaining structure with different rock shapes

  • Lin, Yu-liang;Zhao, Lian-heng;Yang, T.Y.;Yang, Guo-lin;Chen, Xiao-bin
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.599-612
    • /
    • 2020
  • A combination of a gravity wall and an anchor beam is widely used to support the high soil deposit on rock mass. In this study, two groups of shaking table test were performed to investigate the responses of such combined retaining structure, where the rock masses were shaped with a flat surface and a curved surface, respectively. Meanwhile, the dynamic numerical analysis was carried out for a comparison or an extensive study. The results were studied and compared between the combined retaining structures with different shaped rock masses with regard to the acceleration response, the earth pressure response, and the axial anchor force. The acceleration response is not significantly influenced by the surface shape of rock mass. The earth pressure response on the combined retaining structure with a flat rock surface is more intensive than the one with a curved rock surface. The anchor force is significantly enlarged by seismic excitation with a main earthquake-induced increment at the first intensive pulse of Wenchuan motion. The value of anchor force in the combined retaining structure with a flat rock surface is generally larger than the one with a curved rock surface. Generally, the combined retaining structure with a curved rock surface presents a better seismic performance.

Analysis of Seismic Response by the Movement of the Plane Rotation Axis and the Core of Atypical Structures (비정형 구조물의 평면 회전축과 코어의 이동에 따른 지진응답분석)

  • Lee, Da-Hye;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.33-40
    • /
    • 2022
  • When the center of stiffness and the center of mass of the structure differ under the seismic load, torsion is caused by eccentricity. In this study, an analysis model was modeled in which the positions of the core and the plane rotation axis of a 60-story torsional atypical structure with a plane rotation angle of 1 degree per floor were different. The structural behavior of the analysis model was analyzed, and the earthquake response behavior of the structure was analyzed based on the time history analysis results. As a result, as the eccentricity of the structure increased, the eccentricity response was amplified in the high-rise part, and the bending and torsional behavior responses were complex in the low-order vibration mode. As a result of the analysis, the maximum displacement and story drift ratio increased due to the torsional behavior. The maximum story shear force and the story absolute maximum acceleration showed similarities for each analysis model according to the shape of the vibration mode of the analysis model.

The engineering merit of the "Effective Period" of bilinear isolation systems

  • Makris, Nicos;Kampas, Georgios
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.397-428
    • /
    • 2013
  • This paper examines whether the "effective period" of bilinear isolation systems, as defined invariably in most current design codes, expresses in reality the period of vibration that appears in the horizontal axis of the design response spectrum. Starting with the free vibration response, the study proceeds with a comprehensive parametric analysis of the forced vibration response of a wide collection of bilinear isolation systems subjected to pulse and seismic excitations. The study employs Fourier and Wavelet analysis together with a powerful time domain identification method for linear systems known as the Prediction Error Method. When the response history of the bilinear system exhibits a coherent oscillatory trace with a narrow frequency band as in the case of free vibration or forced vibration response from most pulselike excitations, the paper shows that the "effective period" = $T_{eff}$ of the bilinear isolation system is a dependable estimate of its vibration period; nevertheless, the period associated with the second slope of the bilinear system = $T_2$ is an even better approximation regardless the value of the dimensionless strength,$Q/(K_2u_y)=1/{\alpha}-1$, of the system. As the frequency content of the excitation widens and the intensity of the acceleration response history fluctuates more randomly, the paper reveals that the computed vibration period of the systems exhibits appreciably scattering from the computed mean value. This suggests that for several earthquake excitations the mild nonlinearities of the bilinear isolation system dominate the response and the expectation of the design codes to identify a "linear" vibration period has a marginal engineering merit.