• Title/Summary/Keyword: seismic earthquake response

Search Result 1,592, Processing Time 0.028 seconds

Depiction of concrete structures with seismic separation under faraway fault earthquakes

  • Luo, Liang;Nguyen, Hoang;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Nguyen, Viet-Duc;Dang, Hoang-Minh
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.71-82
    • /
    • 2020
  • One of the most suitable methods in structural design is seismic separator. Lead-Rubber Bearing (LRB) is one of the most well-known separation systems which can be used in different types of structures. This system mitigates the earthquake acceleration prior to transferring to the structure efficiently. However, the performance of this system in concrete structures with different heights have not been evaluated thoroughly yet. This paper aims to evaluate the performance of LRB separation system in concrete structures with different heights. For this purpose, three, 16, and 23 story concrete structures are equipped by LRB and exposed to a far-field earthquake. Next, a time history analysis is conducted on each of the structures. Finally, the performance of the concrete structures is compared with each other in the term of their response to the earthquakes and the formation of plastic hinges. The results of the paper show that the rate of change in acceleration response and the ratio of drift along the height of 8 and 23 stories concrete structures are more than those of the 16-stories, and the use of LRB reduces the formation of plastic joints.

Fluid-structure-soil interaction analysis of cylindrical liquid storage tanks subjected to horizontal earthquake loading

  • Kim, Jae-Min;Chang, Soo-Hyuk;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.615-638
    • /
    • 2002
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure considering the effects of the interior fluid and exterior soil medium in the frequency domain. The horizontal and rocking motions of the structure are included in this study. The fluid motion is expressed in terms of analytical velocity potential functions, which can be obtained by solving the boundary value problem including the deformed configuration of the structure as well as the sloshing behavior of the fluid. The effect of the fluid is included in the equation of motion as the impulsive added mass and the frequency-dependent convective added mass along the nodes on the wetted boundary of the structure. The structure and the near-field soil medium are represented using the axisymmetric finite elements, while the far-field soil is modeled using dynamic infinite elements. The present method can be applied to the structure embedded in ground as well as on ground, since it models both the soil medium and the structure directly. For the purpose of verification, earthquake response analyses are performed on several cases of liquid tanks on a rigid ground and on a homogeneous elastic half-space. Comparison of the present results with those by other methods shows good agreement. Finally, an application example of a reinforced concrete tank on a horizontally layered soil with a rigid bedrock is presented to demonstrate the importance of the soil-structure interaction effects in the seismic analysis for large liquid storage tanks.

Evaluation of Seismic Response of Multi-Story Frames for Multiple Ground Excitations (다중 가진에 대한 구조물의 지진응답 평가)

  • Choi, Hyun-Hoon;Christopoulos, C.;Kim, Jin-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.35-45
    • /
    • 2008
  • To investigate the effects of residual displacement, the structural responses of buckling-restrained braced frames (BRBF) and special moment-resisting frames (SMRF) were evaluated for design-based excitations following an application of initial residual drift. The initial residual drift was applied to the structure in two ways. The first way was to simply apply the same earthquake record to the structure twice, with an appropriate pause between applications to allow the structural response from the first record to return to zero. The second way to apply the initial residual drift was to apply a pushover to the structure until it arrives at the desired residual drift value. According to the analysis results, the initial residual drifts had a significant effect on the responses of steel BRBF and SMRF. The responses of BRBF were more highly dependent on the initial residual deformation than the responses of SMRF. Therefore, in order to minimize the post-event repair cost, a reduction of residual drift is required.

Site specific fragility modification factor for mid-rise RC buildings based on plastic energy dissipation

  • Merin Mathews;B.R. Jayalekshmi;Katta Venkataramana
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.331-344
    • /
    • 2024
  • The performance of reinforced concrete buildings subjected to earthquake excitations depends on the structural behaviour of the superstructure as well as the type of foundation and the properties of soil on which the structure is founded. The consideration of the effects due to the interaction between the structure and soil- foundation alters the seismic response of reinforced concrete buildings subjected to earthquake motion. Evaluation of the structural response of buildings for quantitative assessment of the seismic fragility has been a demanding problem for the engineers. Present research deals with development of fragility curve for building specific vulnerability assessment based on different damage parameters considering the effect of soil-structure interaction. Incremental Dynamic Analysis of fixed base and flexible base RC building models founded on different soil conditions was conducted using finite element software. Three sets of fragility curves were developed with maximum roof displacement, inter storey drift and plastic energy dissipated as engineering demand parameters. The results indicated an increase in the likelihood of exceeding various damage limits by 10-40% for flexible base condition with soft soil profiles. Fragility curve based on energy dissipated showed a higher probability of exceedance for collapse prevention damage limit whereas for lower damage states, conventional methods showed higher probability of exceedance. With plastic energy dissipated as engineering demand parameter, it is possible to track down the intensity of earthquake at which the plastic deformation starts, thereby providing an accurate vulnerability assessment of the structure. Fragility modification factors that enable the transformation of existing fragility curves to account for Soil-Structure Interaction effects based on different damage measures are proposed for different soil conditions to facilitate a congenial vulnerability assessment for buildings with flexible base conditions.

Examination of Applicability of Liquefaction Potential Index to Seismic Vulnerability Evaluation of the Korean River Levees (액상화 가능 지수의 국내 하천제방 지진취약도 평가 적용성 검토)

  • Ha, Iksoo;Moon, Injong;Yun, Jungwon;Han, Jintae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.4
    • /
    • pp.31-40
    • /
    • 2017
  • In this study, a simple method to evaluate the seismic vulnerability of river levees was examined considering the structural characteristic of river levee, that is long, and the functional characteristic of river levee that performs temporary function against flood but is a permanent structure in the ordinary way. Considering the fact that one of the main failure modes of the levee during the earthquake are the settlement due to the strength reduction of the ground caused by the increase of the excess pore pressure in the levee body and foundation and the settlement due to liquefaction, the 2-dimensional section of the levee was regarded as the 1-dimensional section and the liquefaction potential index (LPI) for the regarded section was estimated. The estimated LPI was correlated with the seismic vulnerability of river levees. The relationship between the displacement of the levee crest caused by the earthquake and the seismic vulnerability of the levees was obtained from the results of previous researches and the correlation between the displacements of the levee crest computed by 2-dimensional dynamic coupled analyses and LPIs based on the results of 1-dimensional seismic response analyses was investigated. In connection with this correlation, as a result of examination of the correlation between LPI and the seismic vulnerability of the levee, it was concluded that the method for evaluation of the seismic vulnerability of the Korean river levee using LPI is applicable.

The Study on the Structural Behavior of Concrete-filled Composite Piers (콘크리트충전 강합성 교각의 구조적 거동에 관한 연구)

  • 김유경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.151-158
    • /
    • 2000
  • In this paper, It is presented that concrete-filled composite piers have large energy-absorption capacity and high strength and stiffness on account of mutual confinement between the steel plate and filled-in concrete. Concrete-filled composite columns were tested to failure under axial compression and cyclic lateral loading. Displacement ductility index obtained by using the load-displacement relation has been increased with the increment of filled-in concrete length, while it has been decreased according to the incrementation of width-thickness ratio, slenderness ratio and the number of loading cycles. Structural behavior and ductility index estimated for the seismic design showed that composite piers could be used as a very efficient earthquake-resistant structural member. The response modification factor could be re-evaluated for concrete-filled composite piers.

  • PDF

Behavior of Soil-Reinforced Segmental Retaining Walls Subjected to Earthquake Loading (보강토 옹벽의 지진시 거동)

  • 유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.379-386
    • /
    • 2000
  • This paper presents the results of finite element analysis on the seismic response of a soil-reinforced segmental retaining wall subjected to a prescribed earthquake record. The results of finite element analysis indicate that the maximum wall displacement occurs at the top, exhibiting a cantilever type of wall movement. Also revealed is that the increase in reinforcement force is more pronounced in the upper part of the reinforced zone, resulting in a more or less uniform distribution. None of the design guidelines appears to be able to correctly predict the dynamic force increase when compared with the results of finite element analysis. The calculation model adopted by the NCMA guideline, however, appears to compare better with the results of finite element analysis as well as field survey than the FHWA guideline. Based on the findings from this study, a number of implications to the current design methods are discussed.

  • PDF

Analytical fragility curves for typical Algerian reinforced concrete bridge piers

  • Kibboua, Abderrahmane;Naili, Mounir;Benouar, Djillali;Kehila, Fouad
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.411-425
    • /
    • 2011
  • This paper illustrates the results of a seismic vulnerability study aimed to derive the fragility curves for typical Algerian reinforced concrete bridge piers using an analytical approach. Fragility curves express the probability of exceeding a certain damage state for a given ground motion intensity (e.g., PGA). In this respect, a set of 41 worldwide accelerometer records from which, 21 Algerian strong motion records are included, have been used in a non-linear dynamic response analyses to assess the damage indices expressed in terms of the bridge displacement ductility, the ultimate ductility, the cyclic loading factor and the cumulative energy ductility. Combining the damage indices defined for 5 damage rank with the ground motion indices, the fragility curves for the bridge piers were derived assuming a lognormal distribution.

Effect of feedback on PID controlled active structures under earthquake excitations

  • Nigdeli, Sinan Melih
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.217-235
    • /
    • 2014
  • In this paper, different feedback control strategies are presented for active seismic control using proportional-integral-derivative (PID) type controllers. The parameters of PID controller are found by using an numerical algorithm considering time delay, maximum allowed control force and time domain analyses of shear buildings under different earthquake excitations. The numerical algorithm scans combinations of different controller parameters such as proportional gain ($K_p$), integral time ($T_i$) and derivative time ($T_d$) in order to minimize a defined response of the structure. The controllers for displacement, velocity and acceleration feedback control strategies are tuned for structures with active control at the first story and all stories. The performance and robustness of different feedback controls on time and frequency responses of structures are evaluated. All feedback controls are generally robust for the changing properties of the structure, but acceleration feedback control is the best one for efficiency and stability of control system.

Dynamic Response Analysis of R/C Frame Structures Using High-Strength Concrete (고강도 콘크리트를 사용한 R/C 평면골조의 동적응답해석)

  • 장극관;황정현;방세용
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.278-286
    • /
    • 2001
  • The purpose of this paper is to suggest an analytical technique for time history analysis of R/C frame structure using high-strength concrete under seismic loading. Current researches in hysteretic model of structral elements using high-strength concrete are not enough. It is the cause of error that apply hysteretic model of element using normal-strength concrete to the inelastic analysis of high-strength concrete R/C frame structures. In this paper time history analysis using IDARC and DRAIN programs was performed for a 2-bay, 20-story R/C frame structures. Particularly nonlinear dynamic analysis was performed by IDARC program that was applied hysteretic model of structural element using high-strength concrete. centro earthquake 1940 NS waves was used in the analysis and its peak ground accelerations are changed to be 0.12g, 0.25g

  • PDF