• Title/Summary/Keyword: seismic design concept

Search Result 180, Processing Time 0.022 seconds

Digital engineering models for prefabricated bridge piers

  • Nguyen, Duy-Cuong;Park, Seong-Jun;Shim, Chang-Su
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.35-47
    • /
    • 2022
  • Data-driven engineering is crucial for information delivery between design, fabrication, assembly, and maintenance of prefabricated structures. Design for manufacturing and assembly (DfMA) is a critical methodology for prefabricated bridge structures. In this study, a novel concept of digital engineering model that combined existing knowledge of DfMA with object-oriented parametric modeling technologies was developed. Three-dimensional (3D) geometry models and their data models for each phase of a construction project were defined for information delivery. Digital design models were used for conceptual design, including aesthetic consideration and possible variation during fabrication and assembly. The seismic performance of a bridge pier was evaluated by linking the design parameters to the calculated moment-curvature curves. Control parameters were selected to consider the tolerance control and revision of the digital models. Digitalized fabrication of the prefabricated members was realized using the digital fabrication model with G-code for a concrete printer or a robot. The fabrication error was evaluated and the design digital models were updated. The revised fabrication models were used in the preassembly simulation to guarantee constructability. For the maintenance of the bridge, the as-built information was defined for the prefabricated bridge piers. The results of this process revealed that data-driven information delivery is crucial for lifecycle management of prefabricated bridge piers.

Performance Based Design of Friction Dampers for Seismically Excited Structures (지진하중을 받는 구조물의 성능에 기초한 마찰감쇠기 설계)

  • 민경원;김형섭
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.17-24
    • /
    • 2003
  • The main objective of this paper is to evaluate the control performance of a coulomb friction damper(CFD) for controlling the inelastic behavior of seismically excited structures, The seismic performances of various buildings are evaluated using capacity spectrum method(CSM), and the additional dampings are calculated If the evaluated performance levels of the buildings are below the target level. Maximum friction force of the CFD to achieve additional damping is provided using the concept of equivalent viscous damping, Numerical simulations for single degree of freedom(SDOF) systems with various structural periods and post yield stiffness ratios demonstrate the effectiveness of the proposed procedure.

Uniform Hazard Spectra of 5 Major Cities in Korea (국내 5개 주요 도시에 대한 등재해도 스펙트럼)

  • Kim, Jun-Kyoung;Wee, Soung-Hoon;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.37 no.3
    • /
    • pp.162-172
    • /
    • 2016
  • Since the Northridge earthquake in 1994 and the Kobe earthquake in 1995 occurred, the concept of performance based design has been introduced for designing various kinds of important structures and buildings. Uniform hazard spectra (UHS), with annual exceedance probabilities, corresponding to the performance level of each structure, are required for performance-based design. The probabilistic seismic hazard analysis was performed using spectral ground motion prediction equations, which were developed from both Korean Peninsula and Central and Eastern US region, and several seismotectonic models suggested by 10 expert panel members in seismology and tectonics. The uniform hazard spectra for 5 highly populated cities in Korea, with recurrence period of 500, 1,000, and 2,500 years using the seismic hazard at the frequencies of 0.5, 1.0, 2.0, 5.0, 10.0 Hz and Peak ground acceleration (PGA) were analyzed using the probabilistic seismic hazard analysis. The sensitivity analysis suggests that spectral ground motion prediction equations impact much more on seismic hazard than what seismotectonic models do. The uniform hazard spectra commonly showed a maximum hazard at the frequency of 10 Hz and also showed the similar shape characteristics to the previous study and related technical guides to nuclear facilities.

Seismic Performance of a Non-Seismic Designed Pier Wall and Retrofit Concept (비내진 벽식 교각의 내진성능 및 보강개념)

  • Hoon, Lee-Jae;Ho, Choi-Young;Soon, Park-Kwang;Seok, Ju-Hyeong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.87-98
    • /
    • 2009
  • It is well known that reinforcement details in the plastic hinge region of bridge piers give the most important effects on the seismic performance of bridges, from investigations of bridge failures in many earthquake events and in laboratory tests. Longitudinal reinforcement details give larger effects than lateral reinforcement details do. The lap-spliced longitudinal steel shows slip during earthquake events, which results in low ductility and inadequate seismic performance. However, before the issue of the earthquake design code, a considerable number of bridge piers were constructed with lap-spliced longitudinal steel in the plastic hinge region. Therefore, a large amount of research has been conducted on the seismic performance and retrofit of circular and rectangular shaped bridge columns with lap-spliced longitudinal steel. However, research on wall type piers is very limited. This paper investigates the seismic performance of a pier wall by a quasi-static test in the weak axis direction and proposes a retrofit method. From the test with variables being the longitudinal steel detail and the transverse steel amount, it is shown that the currently used definition of yield displacement is not adequate. Therefore a new definition of yield displacement for the ductility investigation for a pier wall is proposed. In addition, a retrofit method by steel plates and bolts is proposed to improve ductility, and test results show that slip of the longitudinal steel is prevented by up to a considerably large displacement.

Life-Cycle Cost Effective Optimal Seismic Retrofit and Maintenance Strategy of Bridge Structures - (II) Methodology for Life-Cycle Cost Analysis (교량의 생애주기비용 효율적인 최적 내진보강과 유지관리전략 - (II) 생애주기비용해석 방법론)

  • Lee, Kwang-Min;Cho, Hyo-Nam;Chung, Jee-Seung;An, Hyoung-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.977-988
    • /
    • 2006
  • The goal of this study is to develop a realistic methodology for determination of the Life-Cycle Cost (LCC)-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges. The proposed methodology is based on the concept of minimum LCC which is expressed as the sum of present value of seismic retrofit costs, expected maintenance costs, and expected economic losses with the constraints such as design requirements and acceptable risk of death. The proposed methodology is applied to the LCC-effective optimal seismic retrofit and maintenance strategy of a steel bridge considered as a example bridge in the accompanying study, and various conditions such as corrosion environments and Average Daily Traffic Volumes (ADTVs) are considered to investigate the effects on total expected LCC. In addition, to verify the validity of the developed methodology, the results are compared with the existing methodology. From the numerical investigation, it may be positively expected that the proposed methodology can be effectively utilized as a practical tool for the decision-making of LCC-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges.

Structural Design of Nakanoshima Festival Tower West that Achieved High-Grade Seismic Performance

  • Kumano, Takehito;Yoshida, Satoshi;Saburi, Kazuhiro
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.217-226
    • /
    • 2017
  • This paper summarizes the structural concept and design of the "Nakanoshima Festival Tower West" in Osaka, Japan, which is 200m high and has a super-high damping system. Its superstructure is mainly composed of a central core and outer tube frames. It has a bottom truss structure at the boundary between the low-rise and mid-rise sections of the building, where the column arrangement is changed. Besides, the high-rise section of the building has a neck truss structure. These truss structures smoothly transfer the axial forces of the columns and reduce the flexural deformations induced by horizontal loads. Oil dampers with extremely high damping capacity are installed in the rigid walls named the "Big Wall Frames" of the low-rise section. Moreover, many braces and damping devices are well arranged in the center core of each story. The damping effects of these devices ensure that all structural members are remain within the elastic range and that story drifts are within 1/150 in large earthquakes. This super-high damping structure in the low-rise section is named the "Damping Layer". The whole structural system is named the "Super Damping Structure". The whole structural systems enhance the building's safety, comfort and Business Continuity Planning (BCP) under large earthquakes.

On the optimum performance-based design of eccentrically braced frames

  • Mohammadi, Reza Karami;Sharghi, Amir Hossein
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.357-374
    • /
    • 2014
  • The design basis is being shifted from strength to deformation in modern performance-based design codes. This paper presents a practical method for optimization of eccentrically braced steel frames, based on the concept of uniform deformation theory (UDT). This is done by gradually shifting inefficient material from strong parts of the structure to the weak areas until a state of uniform deformation is achieved. In the first part of this paper, UDT is implemented on 3, 5 and 10 story eccentrically braced frames (EBF) subjected to 12 earthquake records representing the design spectrum of ASCE/SEI 7-10. Subsequently, the optimum strength-distribution patterns corresponding to these excitations are determined, and compared with four other loading patterns. Since the optimized frames have uniform distribution of deformation, they undergo less damage in comparison with code-based designed structures while having minimum structural weight. For further investigation, the 10 story EBF is redesigned using four different loading patterns and subjected to 12 earthquake excitations. Then a comparison is made between link rotations of each model and those belonging to the optimized one which revealed that the optimized EBF behaves generally better than those designed by other loading patterns. Finally, efficiency of each loading pattern is evaluated and the best one is determined.

A Study on the Probabilistic Safety Assessment and Sensitivity Analysis of Success Criteria of Large LOCA for APR+ (APR+ 확률론적 안전성평가 및 대형냉각재상실사고 성공기준과 파단크기 민감도 분석)

  • Moon, Horim;Kim, Han Gon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.129-134
    • /
    • 2016
  • Standard design of APR+(advanced power reactor plus) was certified at 2014 by Korea regulatory body. Based on the experience gained from OPR1000 and APR1400, the APR1400 was being developed as a 1,500MWe class reactor using Korean technologies for design code, reactor coolant pump, and man-machine interface system. APR+ has been basically designed to have the seismic design basis of safe shutdown earthquake (SSE) 0.3g, a 4-train safety concept based on N+2 design philosophy, and a passive auxiliary feedwater system (PAFS). Also, safety issues on the Fukushima-type accidents have been extensively reviewed and applied to enhance APR+ safety. APR+ provides higher reliability and safety against tsunami and earthquake. The purpose of this paper is to implement probabilistic safety assessment considering these design features and to analyze sensitivity of core damage frequency for large loss of coolant accident of APR+.

A Study on Cost-Effectiveness Evaluation and Optimal Design of ant dampers for Cable-Stayed Bridges (사장교에 장착된 MR 댐퍼의 비용효율성 평가 및 최적설계 연구)

  • Park, Won-Suk;Hahm, Dae-Gi;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.47-56
    • /
    • 2006
  • A method is presented for evaluating the economic efficiency of a semi-active magneto-rheological (MR) damper system for cable-stayed bridges under earthquake loadings. An optimal MR damper capacity maximizing the cost-effectiveness is estimated for various seismic characteristics of ground motion. The economic efficiency of MR damper system is addressed by introducing the life-cycle cost concept. To evaluate the expected damage cost, the probability of failure is estimated. The cost-effectiveness index is defined as the ratio of the sums of the expected damage costs and each device cost between a bridge structure with the MR damper system and a bridge structure with elastic bearings. In the evaluation of cost-effectiveness, the scale of damage cost is adopted as parametric variables. The results of the evaluation show that the MR damper system can be a cost-effective design alternative. The optical capacity of MR damper is increased as the seismic hazard becomes severe.

A low damage and ductile rocking timber wall with passive energy dissipation devices

  • Loo, Wei Yuen;Quenneville, Pierre;Chouw, Nawawi
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.127-143
    • /
    • 2015
  • In conventional seismic design, structures are assumed to be fixed at the base. To reduce the impact of earthquake loading, while at the same time providing an economically feasible structure, minor damage is tolerated in the form of controlled plastic hinging at predefined locations in the structure. Uplift is traditionally not permitted because of concerns that it would lead to collapse. However, observations of damage to structures that have been through major earthquakes reveal that partial and temporary uplift of structures can be beneficial in many cases. Allowing a structure to move as a rigid body is in fact one way to limit activated seismic forces that could lead to severe inelastic deformations. To further reduce the induced seismic energy, slip-friction connectors could be installed to act both as hold-downs resisting overturning and as contributors to structural damping. This paper reviews recent research on the concept, with a focus on timber shear walls. A novel approach used to achieve the desired sliding threshold in the slip-friction connectors is described. The wall uplifts when this threshold is reached, thereby imparting ductility to the structure. To resist base shear an innovative shear key was developed. Recent research confirms that the proposed system of timber wall, shear key, and slip-friction connectors, are feasible as a ductile and low-damage structural solution. Additional numerical studies explore the interaction between vertical load and slip-friction connector strength, and how this influences both the energy dissipation and self-centring capabilities of the rocking structure.