• Title/Summary/Keyword: seismic design concept

Search Result 180, Processing Time 0.026 seconds

Evaluation of Vibration Control Performance of Outrigger Damper System for Tall Buildings Subjected to Seismic Load (아웃리거 댐퍼시스템의 고층건물 지진응답제어 성능 평가)

  • Yoon, Sung-Wook;Lee, Lyeong-Kyeong;Kim, Kwang-Il;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.95-104
    • /
    • 2016
  • Recently, the concept of damped outrigger system has been proposed for tall buildings. But, structural characteristics and design method of this system were not sufficiently investigated to date. In this study, the dynamic response control performance of outrigger damper has been analyzed. To this end, a simplified analysis model with outrigger damper system has been developed. Use the El Centro seismic(1940, NS) analysis was performed. Analysis results, on the top floor displacement response to the earthquake response, did not have a big effect. However, acceleration response control effect was found to be excellent. The increase of outrigger damper capacity usually results in the improved control performance. However, it is necessary to select that proper stiffness and damping values of the outrigger damper system because, the outrigger damper having large capacity is result in heavy financial burden.

Evaluation of Site Specific Ground Response (부지 고유의 지반 거동평가)

  • 김동수;이진선;윤종구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.1-10
    • /
    • 1999
  • Free-field ground motion during earthquake is significantly affected by the local site conditions and it is essential for the seismic design to perform the site specific ground response analysis. In this paper, the procedures of site specific ground response analysis were suggested based on the Korean seismic guideline and the review of state of the art technologies. The concept of ground response analysis was introduced, and the techniques of obtaining soil data for one dimensional equivalent linear analysis which include site investigation planning, field and laboratory testing techniques, deformational characteristics of soils at small to large strains, and site characterization techniques combining field and laboratory test results, were suggested. Finally, the case study was performed at Inchon area following the suggested procedure.

  • PDF

Seismic Design of Long Span Structures Based on Hysteric Energy Absorption Mechanism(1) (이력에너지흡수 원리를 이용한 대경간 구조물의 내진설계(1) -이선형 탄소성 이력거동에 의안 에너지 소산원리를 이용하는 방법-)

  • Cheong, Myung-Chae;Won, Sung-Dae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.85-93
    • /
    • 2010
  • This paper suggests a vibration control method long span structures with trussed roof. Basic concept of this method is based on the energy absorption through hysteresis loop of an elasto-plastic element. This element is attached on the top of the column supporting the roof. Two different types of roofs and three of earthquake waves are used in the investigation. It shows that this is very efficient method to reduce the seismic energy of roof member transferred from the column.

  • PDF

Cyclic Seismic Performance of High-Strength Bolted-Steel Beam Splice (반복재하 실험에 의한 고력볼트 철골 보 이음부의 내진거동 연구)

  • 이철호;박종원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.115-122
    • /
    • 1998
  • This paper presents the cyclic seismic performance of slip-critically designed, high-strength bolted-beam splice in steel moment frames. Before the moment connection reaching its ultimate plastic strength, unexpected premature slippage occurred at the slip-critically designed beam splice during the test. The experimentally observed frictional coefficients were as low as about 50% to 60% of nominal(code) value. Nevertheless, the bearing type behavior mobilized after the slippage transferred the increasing cyclic loads successfully, i.e., the consequence of slippage into bearing was not catastrophic to the connection behavior. The test result seems to indicate that the traditional beam splice design basing upon(bolt-hole deducted) effective flange area criterion may not be sufficient in developing the plastic strength of moment connections under severe earthquake loading. New procedure for achieving slip-critical beam splice design is proposed based on capacity design concept.

  • PDF

Seismic Performance Evaluation and Economic Analysis of 5-Story RC Moment-Resisting Frames (5층 철근콘크리트 모멘트-저항골조 구조물의 내진성능 평가 및 공사원가 분석)

  • Kang, Suk-Bong;Kim, Sungdae;Park, Eu-Su;Oh, Sangmuk;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.569-577
    • /
    • 2015
  • Recently, the concept of seismic design has changed from prescriptive to performance based design. For the performance based design with the specified target performance of the structure, it is necessary to execute the inelastic structural analysis to predict precisely the actual behavior of the structure. To address this issue, the seismic performance of the 5-story RC moment-resisting frames designed in accordance with KBC2009 is evaluated through push-over analysis and economic analysis is conducted focused on the direct construction costs. The results show that the ordinary and the intermediate moment-resisting frame are evaluated to meet the required performance design criteria and that the direct construction costs of the two frames are similar. However, although the special moment-resisting frame designed with strong column-weak girder philosophy satisfies the required performance design criteria, the direct construction cost is uneconomical compared with other frames. Therefore, although the intermediate moment-resisting frame of design category D is prohibited in IBC2012, the ordinary and the intermediate moment-resisting frame are estimated to be more reasonable than the special moment-resisting frame for the design of 5-story RC moment-resisting frame.

Structural Concept Design of KALIMER-600 Sodium Cooled Fast Reactor (소듐냉각 고속로 KALIMER-600 원자로 구조 개념설계)

  • Lee, Jae-Han;Park, Chang-Gyu;Kim, Jong-Bum;Koo, Gyeong-Hoi
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.285-290
    • /
    • 2007
  • KALIMER-600 is a sodium cooled fast reactor with a fast spectrum neutron reactor core. The NSSS design has three heat transport systems of a PHTS (Primary Heat Transport System), a IHTS (Intermediate Heat Transport System) and a SGS (Steam Generation System). PHTS is a pool type and has a large amount of sodium in the pool. The mechanical design targets are maintaining the enough structural integrity for a seismic load of SSE 0.3g and the thermal and mechanical loads by the high temperature environments and an economical competitiveness when compared with other reactor types.

  • PDF

Robust passive damper design for building structures under uncertain structural parameter environments

  • Fujita, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.805-820
    • /
    • 2012
  • An enhanced and efficient methodology is proposed for evaluating the robustness of an uncertain structure with passive dampers. Although the structural performance for seismic loads is an important design criterion in earthquake-prone countries, the structural parameters such as storey stiffnesses and damping coefficients of passive dampers are uncertain due to various factors or sources, e.g. initial manufacturing errors, material deterioration, temperature dependence. The concept of robust building design under such uncertain structural-parameter environment may be one of the most challenging issues to be tackled recently. By applying the proposed method of interval analysis and robustness evaluation for predicting the response variability accurately, the robustness of a passively controlled structure can be evaluated efficiently in terms of the so-called robustness function. An application is presented of the robustness function to the design and evaluation of passive damper systems.

Preliminary Structural Design of Wall-Frame Systems for Optimum Torsional Response

  • Georgoussis, George K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.45-58
    • /
    • 2017
  • Recent investigations have pointed out that current code provisions specifying that the stiffness of reinforced concrete elements is strength independent, and therefore can be estimated prior to any strength assignment, is incorrect. A strength allocation strategy, suitable for preliminary structural design of medium height wall-frame dual systems, is presented for allocating strength in such buildings and estimating the dependable rigidities. The design process may be implemented by either the approximate continuous approach or the stiffness matrix method. It is based on the concept of the inelastic equivalent single-degree-of-freedom system which, the last few years, has been used to implement the performance based seismic design. The aforesaid strategy may also be used to determine structural configurations of minimum rotation distortion. It is shown that when the location of the modal centre of rigidity, as described in author's recent papers, is within a close distance from the mass axis the torsional response is mitigated. The methodology is illustrated in ten story building configurations, whose torsional response is examined under the ground motion of Kobe 1995, component KJM000.

Guidelines of Designing LRB for a Seismically Excited Cable-Stayed Bridge (지진 하중을 받는 사장교를 위한 납고무 받침의 설계 기준 제안)

  • 이성진;박규식;김운학;이인원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.326-333
    • /
    • 2003
  • Most long-span bridges such as a cable-stayed bridges have a number of long-period modes due to the flexibility, thus the design concept extending the natural period of structures using base isolation system may be difficult to use directly to these structures. But, the effectiveness of LRB for cable-stayed bridges is indicated in several papers. In this study, the guidelines of designing LRB for a seismically excited cable-stayed bridge using benchmark cable-stayed bridge are presented. The design properties of LRB are chosen that the design index(DI) is minimized or little changed for variation of properties. And the seismic performance of designed LRB is also investigated. The consequences show that the perforamnce of designed LRB is better than that of simply designed LRB for several history earthquakes. Moreover, the design properties of LRB are researched to several diffrent dominant frequency of earthquake. The results present that the plastic and elastic stiffness of LRB are affected by the dominant frequency of earthquake.

  • PDF

Seismic Analysis of Cable-Stayed Bridges using Nonlinear Static Procedures (비선형 정적 해석법을 이용한 사장교의 지진해석)

  • Shin, Dong Kyu;Kwak, Hyo-Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.59-69
    • /
    • 2011
  • Nonlinear static procedures (NSPs) basing on the concept of performance based seismic design have become one of the promising procedures for seismic evaluation of buildings. Although it needs much less computational cost compared to nonlinear time history analysis (NTHA), its usages are limited to simple structures by its inherent restriction to structures wherein the fundamental mode dominates the response. Several new nonlinear static procedures (Modal Pushover Analysis; MPA and Improved Modal Pushover Analysis; IMPA) which can consider higher modes effect were introduced. Nonetheless, its applicability for complex structures such as cable-stayed bridge has not studied yet. This paper focuses on applicability of nonlinear static procedures for the seismic analysis of cable-stayed bridges. Moreover, reliability indexes which can predict analysis procedure's accuracy are introduced.