• 제목/요약/키워드: seismic design codes

검색결과 306건 처리시간 0.028초

Performance-based wind design framework proposal for tall buildings

  • Alinejad, Hamidreza;Kang, Thomas H.K.;Jeong, Seung Yong
    • Wind and Structures
    • /
    • 제32권4호
    • /
    • pp.283-292
    • /
    • 2021
  • Performance-based seismic design (PBSD) is currently used for retrofitting of older buildings and the design of new buildings. Whereas, application of performance-based design for wind load is still under development. The tendency has been in the codes to increase wind hazard based on recent recorded events. Since tall buildings are highly susceptible to wind load, necessity for developing a framework for performance-based wind design (PBWD) has intensified. Only a few guidelines such as ASCE (2019) provide information on using PBWD as an alternative for code prescriptive wind design. Though wind hazards, performance objectives, analysis techniques, and acceptance criteria are explained, no recommendations are provided for several aspects like how to select a proper level of wind hazard for each target performance criterion. This paper is an attempt to explain current design philosophy for wind and seismic loads and inherent connection between the components of PBSD for development of a framework for PBWD of tall buildings. Recognizing this connection, a framework for PBWD based on limits set for serviceability and strength is also proposed. Also, the potential for carrying out PBWD in line with ASCE 7-16 is investigated and proposed in this paper.

A preliminary case study of resilience and performance of rehabilitated buildings subjected to earthquakes

  • Hadigheh, S. Ali;Mahini, S. Saeed;Setunge, Sujeeva;Mahin, Stephen A.
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.967-982
    • /
    • 2016
  • Current codes design the buildings based on life safety criteria. In a performance-based design (PBD) approach, decisions are made based on demands, such as target displacement and performance of structure in use. This type of design prevents loss of life but does not limit damages or maintain functionality. As a newly developed method, resilience-based design (RBD) aims to maintain functionality of buildings and provide liveable conditions after strong ground movement. In this paper, the seismic performance of plain and strengthened RC frames (an eight-story and two low-rise) is evaluated. In order to evaluate earthquake performance of the frames, the performance points of the frames are calculated by the capacity spectrum method (CSM) of ATC-40. This method estimates earthquake-induced deformation of an inelastic system using a reduced response spectrum. Finally, the seismic performances of the frames are evaluated and the results are compared with a resilience-based design criterion.

현행 내진설계 규준의 수평강도 요구에 대한 평가 (Evaluation of the Strength Required in Current Seismic Design Code)

  • 한상환;오영훈;이리형
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.281-290
    • /
    • 1997
  • 현행 내진설계 규준에서 사용하고 있는 반응수정계수는 설계지진하중과 유사한 지진발생시 구조물이 비선형 거동을 하도록 탄성응답에서 요구되는 밑면전단력 값을 낮추는 계수라 할 수 있다. 따라서 반응수정계수는 하중저감계수(force reduction factor)라고 할 수 있으며, 이러한 값들은 경험적으로 결정된 것이어서 예상지진에 대하여 구조설계자가 설계한 건물이 어느정도의 비선형 거동을 할지는 예측하기가 힘들다. 본 연구에서는 목표가 되는 연성비(target ductility ratio)에 따라 요구되는 밑면전단력의 값을 구하고 이를 규준에서 요구하는 값과 비교할 것이다. 만약 요구되는 값이 규준 값 보다 크다면 이는 구조물이 가지는 부가강도(overstrength)나 잉여력(redundancy)이 담당해야 한다. 모멘트연성골조 건물을 설계한 후 이를 push-over 해석에 의하여 부가강도를 찾아 보아 요구강도와 비교할 것이다.

  • PDF

원형 철근콘크리트 교각의 내진성능 I. 심부구속철근비 영향 변수 평가 (A Seismatic Performance Analysis of Circular RC Bridge Piers I. Evaluation of Influence Parameters of Confinement Steel Ratio)

  • 이대형;박창규;김현준;정영수
    • 콘크리트학회논문집
    • /
    • 제17권4호
    • /
    • pp.603-611
    • /
    • 2005
  • 본 연구에서는 합리적인 내진설계기준의 정립을 위하여 철근콘크리트 교각의 내진성능에 영향을 미치는 주요 인자에 대하여 분석하였다. 주요 각국의 내진규정에서 내진성능을 발휘하기 위한 심부구속철근량을 규정함에 있어 다양한 요소들을 고려하고 있다. 하지만, 이러한 요소들이 합리적으로 고려되었는가에 대해서는 의문이 남는다. 따라서 본 연구에서 국내의 도로교설계기준, Eurocode 8 part2, NZS 3101, ATC-32 등의 설계기준을 비교분석하고, 기존 실험 연구 결과와 비교 분석하여 합리적인 영향인자들을 제안하고자 하였다. 연구결과에 따르면 원형 철근콘크리트 교각의 내진성능에 가장 지배적인 영향인자는 축하중비인 것으로 조사되었다. 따라서 심부구속철근비 산정식에 축하중비의 영향을 전혀 고려하고 있지 않는 현행 도로교설계기준에 축하중비를 도입해야 한다.

입력 지진의 주파수 특성을 고려한 중력식 안벽의 수평 지진계수에 대한 고찰 (A Discussion on the Seismic Coefficient for Gravity Quay Wall Considering Frequency Characteristics of Input Earthquake)

  • 이문교;하정곤;박헌준;김동수
    • 한국지진공학회논문집
    • /
    • 제22권1호
    • /
    • pp.15-22
    • /
    • 2018
  • Pseudo-static approach has been conventionally applied for the design of gravity type quay walls. In this method, seismic coefficient ($k_h$), expressed in terms of acceleration due to gravity, is used to convert the real dynamic behavior to an equivalent pseudo-static inertial force for seismic analysis and design. Therefore, the calculation of an appropriate $k_h$ considering frequency characteristics of input earthquake is critical for representing the real dynamic behavior. However, the definitions of $k_h$, which is used for simplified analysis in Korea, focuses only on convenience that is easy to use, and the frequency characteristics of input earthquake are not reflected in the $k_h$ definitions. This paper evaluates the influences of the frequency characteristics of input earthquake on $k_h$ by initially reviewing the $k_h$ definitions in the existing codes of Japan for port structures and then by performing a series of dynamic centrifuge tests on caisson gravity quay walls of different earthquake input motions (Ofunato, Hachinohe). A review of the existing codes and guidelines has shown that the $k_h$ values are differently estimated according to the frequency characteristics of input earthquake. On the other hand, based on the centrifuge tests, it was found that the permanent displacements of wall are more induced when long-period-dominant earthquake is applied.

내부 보-기둥 접합부의 전단파괴 (Joint Shear Failure of Reinforced Concrete Interior Beam-Column Joint)

  • 이민섭;홍성걸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.303-308
    • /
    • 2000
  • The design of column joint is an important part of earthquake resistant design of reinforced concrete moment resisting frames. Beam column joints must provide sufficient stiffness and strength to resist and sustain the loads induced by adjacent beams and columns. This paper investigates the difference of the current design codes which provide a different approach for the design of beam column joint in seismic zone. The model provided by Hitoshi Shiohara(1998) is reviewed in this paper, which provides a good relationship between moment and shear action of interior beam column joint and a role shear reinforcement according to their position.

  • PDF

Shaking Table Model Test of Shanghai Tower

  • Lu, Xilin;Mao, Yuanjun;Lu, Wensheng;Kang, Liping
    • 국제초고층학회논문집
    • /
    • 제2권1호
    • /
    • pp.79-83
    • /
    • 2013
  • Shaking table test is an important and useful method to help structural engineers get better knowledge about the seismic performance of the buildings with complex structure, just like Shanghai tower. According to Chinese seismic design guidelines, buildings with a very complex and special structural system, or whose height is far beyond the limitation of interrelated codes, should be firstly studied through the experiment on seismic behavior. To investigate the structural response, the weak storey and crack pattern under earthquakes of different levels, and to help the designers improve the design scheme, the shaking table model tests of a scaled model of Shanghai tower were carried out at the State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China. This paper describes briefly the structural system, the design method and manufacture process of the scaled model, and the test results as well.

Approximate methods to evaluate storey stiffness and interstory drift of RC buildings in seismic area

  • Caterino, N.;Cosenza, E.;Azmoodeh, B.M.
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.245-267
    • /
    • 2013
  • During preliminary design of a RC building located in a seismic area, having quick but reliable analytical measurement of interstory drifts and storey stiffnesses might be helpful in order to check the fulfillment of damage limit state and stiffness regularity in elevation required by seismic design codes. This paper presents two approximate methods, strongly interrelated each other, and addressed to achieve each of these two purposes for frame buildings. A brief description of some already existing methods addressed to the same aims is included to compare the main differences in terms of general approaches and assumptions. Both new approximate methods are then applied to 9 'ideal' frames and 2 'real' buildings designed according to the Italian seismic code. The results are compared with the 'exact' values obtained by the code-based standard calculation, performed via FEM models, showing a satisfactory range of accuracy. Compared with those by the other methods from literature, they indicate the proposed procedures lead to a better approximation of the objective structural parameters, especially for those buildings designed according to the modern 'capacity design' philosophy.

Soft story retrofit of low-rise braced buildings by equivalent moment-resisting frames

  • Ebadi, Parviz;Maghsoudi, Ahmad;Mohamady, Hessam
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.621-632
    • /
    • 2018
  • Soft-story buildings have bottom stories much less rigid than the top stories and are susceptible to earthquake damage. Therefore, the seismic design specifications need strict design considerations in such cases. In this paper, a four-story building was investigated as a case study and the effects of X-braces elimination in its lower stories studied. In addition, the possibility of replacement of the X-braces in soft-stories with equivalent moment resisting frame inspected in two different phases. In first phase, the stiffness of X-braces and equivalent moment-resisting frames evaluated using classic equations. In final phase, diagonals removed from the lowest story to develop a soft-story and replaced with moment resisting frames. Then, the seismic stiffness variation of moment-resisting frame evaluated using nonlinear static and dynamic analyses. The results show that substitution of braced frames with an equivalent moment-resisting frame of the same stiffness increases story drift and reduces energy absorption capacity. However, it is enough to consider the needs of building codes, even using equivalent moment resisting frame instead of X-Braces, to avoid soft-story stiffness irregularity in seismic design of buildings. Besides, soft-story development in the second story may be more critical under strong ground excitations, because of interaction of adjacent stories.

TECSolverApp: The equivalent seismic load solver in MATLAB App Designer and ASP.NET Core

  • Muhammet Dingil;Yakup Turedi;Murat Ornek
    • Computers and Concrete
    • /
    • 제34권3호
    • /
    • pp.355-365
    • /
    • 2024
  • TECSolverApp is an application that calculates the total equivalent seismic load (base shear) and shows the design spectra in accordance with the Turkish Earthquake Code (TEC). TECSolverApp software can present the spectral acceleration-period graph and the base shear (in terms of unit building weight) in MATLAB and .NET Core frameworks according to TEC 2007 and TEC 2018. In the software, three different building period evaluation options were provided, as entering the period directly, empirical calculation, and using the period calculation formula. In different period calculation scenarios, particular design input parameters such as site-specific spectral acceleration coefficients, local soil class, building importance coefficient, and structural system behavior coefficient are expected. TECSolverApp was produced in two different programming languages and published in MATLAB App Designer and ASP.NET Core MVC environments. To be shared in MATLAB App Designer, it was aimed at availability through the program and distributability as a desktop application. By deploying in ASP.NET Core MVC, open-source cross-platform coding and web-based accessibility were targeted. One of the strongest aspects of TECSolverApp is its developability thanks to software architecture. In this respect, it can be foreseen that other international seismic codes can be added to the calculations in the future.