• Title/Summary/Keyword: seismic data

Search Result 1,402, Processing Time 0.025 seconds

The characteristics of upper crust below the southern Korean Peninsula by using 3-D tomography (3차원 토모그래피 방법으로 본 한반도 남부지역의 상부지각 속도 특성)

  • Park, Jung-Ho;Kang, Ik-Bum
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.64-69
    • /
    • 2006
  • At starting point, 1D velocity models were inverted by using 430 events with P-wave 5147, S-wave 3729 from KIGAM, KMA, KEPRI, and KINS's seismic networks. A minimum 1D model shows that P-wave velocities are around $6.0{\pm}0.5\;km/s$ slowly increasing with depth between surface and 15 km. The velocities are about $6.4{\pm}0.2\;km/s$ below 15km to 35km. The earthquake data number for 3D tomography was 630 adding to previous 430 events with limitation of more than 6 station detection and relocation stability of location. The checkerboard test shows that only upper curst part from surface to 17 km have reliable resolution. The results of upper crust part present that the boundary of Gyeong-sang basin and Youngnam massif is mach well velocity variation pattern. The western part of the basin is shown as lower velocity and south-eastern part as higher. This is because that sedimentary rocks are widely located around western part of the basin and volcanic origin rocks are distributed around south-eastern part.

  • PDF

Experimental investigation of thin steel plate shear walls with different infill-to-boundary frame connections

  • Vatansever, Cuneyt;Yardimci, Nesrin
    • Steel and Composite Structures
    • /
    • v.11 no.3
    • /
    • pp.251-271
    • /
    • 2011
  • To make direct comparisons regarding the cyclic behavior of thin steel plate shear walls (TSPSWs) with different infill-to-boundary frame connections, two TSPSWs were tested under quasi-static conditions, one having the infill plate attached to the boundary frame members on all edges and the other having the infill plate connected only to the beams. Also, the bare frame that was used in the TSPSW specimens was tested to provide data for the calibration of numerical models. The connection of infill plates to surrounding frames was achieved through the use of self-drilling screws to fish plates that were welded to the frame members. The behavior of TSPSW specimens are compared and discussed with emphasis on the characteristics important in seismic response, including the initial stiffness, ultimate strength and deformation modes observed during the tests. It is shown that TSPSW specimens achieve significant ductility and energy dissipation while the ultimate failure mode resulted from infill plate fracture at the net section of the infill plate-to-boundary frame connection after substantial infill plate yielding. Experimental results are compared to monotonic pushover predictions from computer analysis using strip models and the models are found to be capable of approximating the monotonic behavior of the TSPSW specimens.

Comparative review and interpretation of the conventional and new methods in blast vibration analyses

  • Uyar, G. Gulsev;Aksoy, C.O.
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.545-554
    • /
    • 2019
  • The customary approach used in the blast vibration analysis is to derive empirical relations between the peak particle velocities of blast-induced waves and the scaled distance, and to develop patterns limiting the amounts of explosives. During the periods when excavations involving blasting were performed at sites far from residential areas and infrastructure works, this method based on empirical correlations could be effective in reducing vibrations. However, blasting procedures applied by the fast-moving mining and construction industries today can be very close to, in particular cities, residential areas, pipelines, geothermal sites, etc., and this reveals the need to minimize blast vibrations not only by limiting the use of explosives, but also employing new scientific and technological methods. The conventional methodology in minimizing blast vibrations involves the steps of i) measuring by seismograph peak particle velocity induced by blasting, ii) defining ground transmission constants between the blasting area and the target station, iii) finding out the empirical relation involving the propagation of seismic waves, and iv) employing this relation to identify highest amount of explosive that may safely be fired at a time for blasting. This paper addresses practical difficulties during the implementation of this conventional method, particularly the defects and errors in data evaluation and analysis; illustrates the disadvantages of the method; emphasizes essential considerations in case the method is implemented; and finally discusses methods that would fit better to the conditions and demands of the present time compared to the conventional method that intrinsically hosts the abovementioned disadvantages.

Preliminary Modelling of Plasco Tower Collapse

  • Yarlagadda, Tejeswar;Hajiloo, Hamzeh;Jiang, Liming;Green, Mark;Usmani, Asif
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.397-408
    • /
    • 2018
  • In a recent tragic fire incident, the Plasco Tower collapsed after an intense outburst of fire lasting for three and a half hours and claiming the lives of 16 firefighters and 6 civilians. This paper will present continuing collaborative work between Hong Kong Polytechnic University and Queen's University in Canada to model the progressive collapse of the tower. The fire started at the 10th floor and was observed to have travelled along the floor horizontally and through the staircase and windows vertically. Plasco Tower was steel structure and all the steel sections were fabricated by welding standard European channel or angle profiles and no fire protection was applied. Four internal columns carried the loads transferred by the primary beams, and box columns were constructed along the perimeter of the building as a braced tube for resisting seismic loading. OpenSees fibre-based sections and displacement-based beam-column elements are used to model the frames, while shell elements are used for the reinforced concrete floor slabs. The thermal properties and elevated temperature mechanical properties are as recommended in the Eurocodes. The results in this preliminarily analysis are based on rough estimations of the structure's configuration. The ongoing work looks at modeling the Plasco Tower based on the most accurate findings from reviewing many photographs and collected data.

Electrical resistivity tomography survey for prediction of anomaly in mechanized tunneling

  • Lee, Kang-Hyun;Park, Jin-Ho;Park, Jeongjun;Lee, In-Mo;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.93-104
    • /
    • 2019
  • Anomalies and/or fractured grounds not detected by the surface geophysical and geological survey performed during design stage may cause significant problems during tunnel excavation. Many studies on prediction methods of the ground condition ahead of the tunnel face have been conducted and applied in tunneling construction sites, such as tunnel seismic profiling and probe drilling. However, most such applications have focused on the drill and blast tunneling method. Few studies have been conducted for mechanized tunneling because of the limitation in the available space to perform prediction tests. This study aims to predict the ground condition ahead of the tunnel face in TBM tunneling by using an electrical resistivity tomography survey. It compared the characteristics of each electrode array and performed an investigation on in-situ tunnel boring machine TBM construction site environments. Numerical simulations for each electrode array were performed, to determine the proper electrode array to predict anomalies ahead of the tunnel face. The results showed that the modified dipole-dipole array is, compared to other arrays, the best for predicting the location and condition of an anomaly. As the borehole becomes longer, the measured data increase accordingly. Therefore, longer boreholes allow a more accurate prediction of the location and status of anomalies and complex grounds.

Reliability assessment of semi-active control of structures with MR damper

  • Hadidi, Ali;Azar, Bahman Farahmand;Shirgir, Sina
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.131-141
    • /
    • 2019
  • Structural control systems have uncertainties in their structural parameters and control devices which by using reliability analysis, uncertainty can be modeled. In this paper, reliability of controlled structures equipped with semi-active Magneto-Rheological (MR) dampers is investigated. For this purpose, at first, the effect of the structural parameters and damper parameters on the reliability of the seismic responses are evaluated. Then, the reliability of MR damper force is considered for expected levels of performance. For sensitivity analysis of the parameters exist in Bouc- Wen model for predicting the damper force, the importance vector is utilized. The improved first-order reliability method (FORM), is used to reliability analysis. As a case study, an 11-story shear building equipped with 3 MR dampers is selected and numerically obtained experimental data of a 1000 kN MR damper is assumed to study the reliability of the MR damper performance for expected levels. The results show that the standard deviation of random variables affects structural reliability as an uncertainty factor. Thus, the effect of uncertainty existed in the structural model parameters on the reliability of the structure is more than the uncertainty in the damper parameters. Also, the reliability analysis of the MR damper performance show that to achieve the highest levels of nominal capacity of the damper, the probability of failure is greatly increased. Furthermore, by using sensitivity analysis, the Bouc-Wen model parameters which have great importance in predicting damper force can be identified.

Fundamental vibration frequency prediction of historical masonry bridges

  • Onat, Onur
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.155-162
    • /
    • 2019
  • It is very common to find an empirical formulation in an earthquake design code to calculate fundamental vibration period of a structural system. Fundamental vibration period or frequency is a key parameter to provide adequate information pertinent to dynamic characteristics and performance assessment of a structure. This parameter enables to assess seismic demand of a structure. It is possible to find an empirical formulation related to reinforced concrete structures, masonry towers and slender masonry structures. Calculated natural vibration frequencies suggested by empirical formulation in the literatures has not suits in a high accuracy to the case of rest of the historical masonry bridges due to different construction techniques and wide variety of material properties. For the listed reasons, estimation of fundamental frequency gets harder. This paper aims to present an empirical formulation through Mean Square Error study to find ambient vibration frequency of historical masonry bridges by using a non-linear regression model. For this purpose, a series of data collected from literature especially focused on the finite element models of historical masonry bridges modelled in a full scale to get first global natural frequency, unit weight and elasticity modulus of used dominant material based on homogenization approach, length, height and width of the masonry bridge and main span length were considered to predict natural vibration frequency. An empirical formulation is proposed with 81% accuracy. Also, this study draw attention that this accuracy decreases to 35%, if the modulus of elasticity and unit weight are ignored.

Effective torsional stiffness of reinforced concrete structural walls

  • Luo, Da;Ning, Chaolie;Li, Bing
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.119-127
    • /
    • 2019
  • When a structural wall is subjected to multi-directional ground motion, torsion-induced cracks degrade the stiffness of the wall. The effect of torsion should not be neglected. As a main lateral load resisting member, reinforced concrete (RC) structural wall has been widely studied under the combined action of bending and shear. Unfortunately, its seismic behavior under a combined action of torsion, bending and shear is rarely studied. In this study, torsional performances of the RC structural walls under the combined action is assessed from a comprehensive parametrical study. Finite element (FE) models are built and calibrated by comparing with the available experimental data. The study is then carried out to find out the critical design parameter affecting the torsional stiffness of RC structural walls, including the axial load ratio, aspect ratio, leg-thickness ratio, eccentricity of lateral force, longitudinal reinforcement ratio and transverse reinforcement ratio. Besides, to facilitate the application in practice, an empirical equation is developed to estimate the torsional stiffness of RC rectangular structural walls conveniently, which is found to agree well with the numerical results of the developed FE models.

Mechanics of a variable damping self-centering brace: Seismic performance and failure modes

  • Xie, Xing-Si;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.149-158
    • /
    • 2019
  • The force-deformation behavior, strain distribution and failure modes of a variable damping self-centering brace (VD-SCB) are theoretically analyzed, experimentally studied, and numerically simulated to guide its design. The working principle of the brace is explained by describing the working stages and the key feature points of the hysteretic curve. A large-scale brace specimen was tested under different sinusoidal excitations to analyze the recentering capability and energy dissipation. Results demonstrate that the VD-SCB exhibits a full quasi-flag-shaped hysteretic response, high ultimate bearing capacity, low activation force and residual deformation, and excellent recentering and energy dissipation capabilities. Calculation equations of the strain distribution in different parts of the brace are proposed and are compared with the experimental data and simulated results. The developments of two failure modes are compared. Under normal circumstances, the brace fails due to the yielding of the spring blocking plates, which are easily replaced to restore the normal operating conditions of the brace. A brief description of the design procedure of the brace is proposed for application.

Time-series Analysis of Geodetic Reference Frame Aligned to International Terrestrial Reference Frame

  • Bae, Tae-Suk;Hong, Chang-Ki;Lee, Jisun;Altamimi, Zuheir;Sillard, Patrick;Boucher, Claude
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.313-319
    • /
    • 2021
  • The national geodetic reference frame of Korea was adopted in 2003, which is referenced to ITRF (International Terrestrial Reference Frame) 2000 at the epoch of January 1, 2002. For precise positioning based on the satellites, it should be thoroughly maintained to the newest global reference frame. Other than plate tectonic motion, there are significant events or changes such as earthquakes, antenna replacement, PSD (Post-Seismic Deformation), seasonal variation etc. We processed three years of GNSS (Global Navigation Satellite System) data(60 NGII CORS stations, 51 IGS core stations) to produce daily solutions minimally constrained to ITRF. From the time series of daily solutions, the sites with unexpected discontinuity were identified to set up an event(mostly antenna replacement). The combined solution with minimum constraints was estimated along with the velocity, the offsets, and the periodic signals. The residuals show that the surrounding environment also affects the time series to a certain degree, thus it should be improved eventually. The transformation parameters to ITRF2014 were calculated with stability and consistency, which means the national geodetic reference frame is properly aligned to the global reference frame.