• 제목/요약/키워드: seismic damage assessment

검색결과 275건 처리시간 0.029초

3차원 해석 모델을 이용한 RC 프레임 구조물의 지진 취약도 평가 (Seismic Vulnerability Assessment of RC Frame Structures Using 3D Analytical Models)

  • 문도수;이영주;이상목
    • 한국산학기술학회논문지
    • /
    • 제17권9호
    • /
    • pp.724-731
    • /
    • 2016
  • 지진으로 인한 구조물의 피해가 지속적으로 증가하면서, 구조물의 취약성을 평가하는 일은 지진 대비에 필수적으로 여겨지고 있다. 지진 취약도 곡선은 지진에 대한 구조물의 안전도에 대한 확률 지표로써 널리 이용되고 있으며, 많은 연구자들에 의해 보다 정확하고 효율적인 취약도 곡선 도출을 위한 노력이 계속되고 있다. 하지만 기존의 대부분의 연구에서는 취약도 곡선 도출시 수치해석 시간 절약을 위해 단순화된 2차원 해석모델을 사용해 왔는데, 많은 경우에 있어 2차원 모델은 정확한 구조물의 내진 거동 및 지진 취약성을 평가하기에 적당하지 않을 수 있다. 이에 본 연구에서는 3차원 해석 모델을 사용하여 더욱 정확하면서도 여전히 효과적으로 지진 취약도 곡선을 도출할 수 있는 방법을 제시한다. 이 방법은 신뢰성 해석 소프트웨어인 FERUM과 구조해석 소프트웨어인 ZEUS-NL을 서로 연동시켜 상호 자동적인 데이터 교환이 가능하게 하고, 샘플링 기법이 아닌 FORM 해석 기법을 통해 구조물의 파괴확률을 구한다. 이는 3차원 모델을 사용의 경우에도 효율적으로 구조 신뢰성 해석이 가능하게 해준다. 이를 이용해 RC 프레임 구조물의 3차원 해석 모델을 사용하여 지진 취약성 평가를 수행하였다.

Fragility assessment of buckling-restrained braced frames under near-field earthquakes

  • Ghowsi, Ahmad F.;Sahoo, Dipti R.
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.173-190
    • /
    • 2015
  • This study presents an analytical investigation on the seismic response of a medium-rise buckling-restrained braced frame (BRBF) under the near-fault ground motions. A seven-story BRBF is designed as per the current code provisions for five different combinations of brace configurations and beam-column connections. Two types of brace configurations (i.e., Chevron and Double-X) are considered along with a combination of the moment-resisting and the non-moment-resisting beam-to-column connections for the study frame. Nonlinear dynamic analyses are carried out for all study frames for an ensemble of forty SAC near-fault ground motions. The main parameters evaluated are the interstory and residual drift response, brace displacement ductility, and plastic hinge mechanisms. Fragility curves are developed using log-normal probability density functions for all study frames considering the interstory drift ratio and residual drift ratio as the damage parameters. The average interstory drift response of BRBFs with Double-X brace configurations significantly exceeded the allowable drift limit of 2%. The maximum displacement ductility characteristics of BRBs is efficiently utilized under the seismic loading if these braces are arranged in the Double-X configurations instead of Chevron configurations in BRBFs located in the near-fault regions. However, BRBFs with the Double-X brace configurations exhibit the higher interstory drift and residual drift response under near-fault ground motions due to the formation of plastic hinges in the columns and beams at the intermediate story levels.

Comparison of Different Numerical Models of RC Elements for Predicting the Seismic Performance of Structures

  • Zendaoui, Abdelhakim;Kadid, A.;Yahiaoui, D.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.461-478
    • /
    • 2016
  • This paper aims to provide guidelines for the numerical modeling of reinforced concrete (RC) frame elements in order to assess the seismic performance of structures. Several types of numerical models RC frame elements are available in nonlinear structural analysis packages. Since these numerical models are formulated based on different assumption and theories, the models accuracy, computing time, and applicability vary, which poses a great difficulty to practicing engineering and limits their confidence in the analysis resultants. In this study, the applicability of four representative numerical models of RC frame elements is evaluated through comparison with experimental results of four-storey bare frame available from European Laboratory for Structural Assessment. The accuracy of a numerical model is evaluated according to the top displacement, interstorey drift, Maximum storey shear, damage pattern and energy dissipation capacity of the frame structure. The results obtained allow a better understanding of the characteristics and potentialities of all procedures, helping the user to choose the best approach to perform nonlinear analysis.

Development of earthquake instrumentation for shutdown and restart criteria of the nuclear power plant using multivariable decision-making process

  • Hasan, Md M.;Mayaka, Joyce K.;Jung, Jae C.
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.860-868
    • /
    • 2018
  • This article presents a new design of earthquake instrumentation that is suitable for quick decision-making after the seismic event at the nuclear power plant (NPP). The main objective of this work is to ensure more availability of the NPP by expediting walk-down period when the seismic wave is incident. In general, the decision-making to restart the NPP after the seismic event requires more than 1 month if an earthquake exceeds operating basis earthquake level. It affects to the plant availability significantly. Unnecessary shutdown can be skipped through quick assessments of operating basis earthquake, safe shutdown earthquake events, and damage status to structure, system, and components. Multidecision parameters such as cumulative absolute velocity, peak ground acceleration, Modified Mercalli Intensity Scale, floor response spectrum, and cumulative fatigue are discussed. The implementation scope on the field-programmable gate array platform of this work is limited to cumulative absolute velocity, peak ground acceleration, and Modified Mercalli Intensity. It can ensure better availability of the plant through integrated decision-making process by automatic assessment of NPP structure, system, and components.

Assessment of seismic risk of a typical RC building for the 2016 Gyeongju and potential earthquakes

  • Jee, Hyun Woo;Han, Sang Whan
    • Earthquakes and Structures
    • /
    • 제20권3호
    • /
    • pp.337-351
    • /
    • 2021
  • On September 12, 2016, the Gyeongju earthquake occurred in the south-eastern region of the Korean peninsula. The event was ranked as the largest magnitude earthquake (=5.8) since instrumental recording was started by the Korean Metrological Administration (KMA) in 1978. The objective of this study is to provide information obtained from the 2016 Gyeongju earthquake and to propose a procedure estimating seismic risk of a typical old RC building for past and potential earthquakes. Ground motions are simulated using the point source model at 4941 grid locations in the Korean peninsula that resulted from the Gyeongju earthquake and from potential future earthquakes with the same hypocenter considering different soil conditions. Nonlinear response history analyses are conducted for each grid location using a three-story gravity-designed reinforced concrete (RC) frame that most closely represents conventional old school and public buildings. Then, contour maps are constructed to present the seismic risk associated with this building for the Gyeongju earthquake and potential future scenario earthquakes. These contour maps can be useful in the development of a mitigation plan for potential earthquake damage to school and public buildings at all grid locations on the Korean peninsula.

Seismic vulnerability of old confined masonry buildings in Osijek, Croatia

  • Hadzima-Nyarko, Marijana;Pavica, Gordana;Lesic, Marija
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.629-648
    • /
    • 2016
  • This paper deals with 111 buildings built between 1962 and 1987, from various parts of the city of Osijek, for which, through the collection of documentation, a database is created. The aim of this paper is to provide the first steps in assessing seismic risk in Osijek applying method based on vulnerability index. This index uses collected information of parameters of the building: the structural system, the construction year, plan, the height, i.e., the number of stories, the type of foundation, the structural and non-structural elements, the type and the quality of main construction material, the position in the block and built-up area. According to this method defining five damage states, the action is expressed in terms of the macroseismic intensity and the seismic quality of the buildings by means of a vulnerability index. The value of the vulnerability index can be changed depending on the structural systems, quality of construction, etc., by introducing behavior and regional modifiers based on expert judgments. Since there is no available data of damaged buildings under earthquake loading in our country, we will propose behavior modifiers based on values suggested by earlier works and on judgment based on available project documentation of the considered buildings. Depending on the proposed modifiers, the seismic vulnerability of existing buildings in the city of Osijek will be assessed. The resulting vulnerability of the considered residential buildings provides necessary insight for emergency planning and for identification of critical objects vulnerable to seismic loading.

APR+ 확률론적 안전성평가 및 대형냉각재상실사고 성공기준과 파단크기 민감도 분석 (A Study on the Probabilistic Safety Assessment and Sensitivity Analysis of Success Criteria of Large LOCA for APR+)

  • 문호림;김한곤
    • 한국안전학회지
    • /
    • 제31권6호
    • /
    • pp.129-134
    • /
    • 2016
  • Standard design of APR+(advanced power reactor plus) was certified at 2014 by Korea regulatory body. Based on the experience gained from OPR1000 and APR1400, the APR1400 was being developed as a 1,500MWe class reactor using Korean technologies for design code, reactor coolant pump, and man-machine interface system. APR+ has been basically designed to have the seismic design basis of safe shutdown earthquake (SSE) 0.3g, a 4-train safety concept based on N+2 design philosophy, and a passive auxiliary feedwater system (PAFS). Also, safety issues on the Fukushima-type accidents have been extensively reviewed and applied to enhance APR+ safety. APR+ provides higher reliability and safety against tsunami and earthquake. The purpose of this paper is to implement probabilistic safety assessment considering these design features and to analyze sensitivity of core damage frequency for large loss of coolant accident of APR+.

국내 철근콘크리트 학교건물의 지진피해율 분포에 관한 연구 (Earthquake Damage Assessment of Reinforced Concrete School Buildings in Korea)

  • 전경주;위정두;이강석;황기태;윤석훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.117-118
    • /
    • 2010
  • 본 연구에서는 기존에 제안된 저층 철근콘크리트 건물의 간이 내진성능 평가법1)을 토대로 국내 S, G 및 J지역에 현존하는 철근콘크리트 학교건물을 대상으로 내진성능을 평가하여 결과를 검토함과 동시에 지진피해율 정도를 추정하여 입력지진동 크기(0.1g~0.25g)에 따른 지진피해율 분포를 상정하였다.

  • PDF

Seismic progressive collapse assessment of 3-story RC moment resisting buildings with different levels of eccentricity in plan

  • Karimiyan, Somayyeh;Moghadam, Abdolreza S.;Vetr, Mohammad G.
    • Earthquakes and Structures
    • /
    • 제5권3호
    • /
    • pp.277-296
    • /
    • 2013
  • Margin of safety against potential of progressive collapse is among important features of a structural system. Often eccentricity in plan of a building causes concentration of damage, thus adversely affects its progressive collapse safety margin. In this paper the progressive collapse of symmetric and asymmetric 3-story reinforced concrete ordinary moment resisting frame buildings subjected to the earthquake ground motions are studied. The asymmetric buildings have 5%, 15% and 25% mass eccentricity. The distribution of the damage and spread of the collapse is investigated using nonlinear time history analyses. Results show that potential of the progressive collapse at both stiff and flexible edges of the buildings increases with increase in the level of asymmetry in buildings. It is also demonstrated that "drift" as a more easily available global response parameter is a good measure of the potential of progressive collapse rather than much difficult-to-calculate local response parameter of "number of collapse plastic hinges".

CFRP 교각 재킷 보수를 적용한 손상된 철근콘크리트 교량 교각의 여진 취약도 분석 (Aftershock Fragility Assessment of Damaged RC Bridge Piers Repaired with CFRP Jackets under Successive Seismic Events)

  • 전종수;이도형
    • 한국지진공학회논문집
    • /
    • 제22권5호
    • /
    • pp.271-280
    • /
    • 2018
  • This paper presents a framework for developing aftershock fragility curves for reinforced concrete bridges initially damaged by mainshocks. The presented aftershock fragility is a damage-dependent fragility function, which is conditioned on an initial damage state resulting from mainshocks. The presented framework can capture the cumulative damage of as-built bridges due to mainshock-aftershock sequences as well as the reduced vulnerability of bridges repaired with CFRP pier jackets. To achieve this goal, the numerical model of column jackets is firstly presented and then validated using existing experimental data available in literature. A four-span concrete box-girder bridge is selected as a case study to examine the application of the presented framework. The aftershock fragility curves are derived using response data from back-to-back nonlinear dynamic analyses under mainshock-aftershock sequences. The aftershock fragility curves for as-built bridge columns are firstly compared with different levels of initial damage state, and then the post-repair effect of FRP pier jacket is examined through the comparison of aftershock fragility curves for as-built and repaired piers.