• Title/Summary/Keyword: seismic damage assessment

Search Result 272, Processing Time 0.032 seconds

Development of a Seismic Damage Assessment Program for NPP Containment Structure (원전격납건물 지진피해평가 프로그램 개발)

  • 고현무;신현목;최강룡;정대열;현창헌;조호현;김태훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.118-125
    • /
    • 2003
  • Seismic damage assessment program for containment structure is developed. The program has been established through the combination of inelastic seismic analysis program and 3-D animation program. Damage indices at finite element level and structural level have been introduced for the seismic damage assessment. The seismic damage assessment program makes it possible to analyze in real-time the actual resistance capacity and damage level of containment structure. It will be expected that the program enables to establish the measures more quickly under the earthquake event.

  • PDF

Seismic vulnerability assessment criteria for RC ordinary highway bridges in Turkey

  • Avsar, O.;Yakut, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.127-145
    • /
    • 2012
  • One of the most important and challenging steps in seismic vulnerability and performance assessment of highway bridges is the determination of the bridge component damage parameters and their corresponding limit states. These parameters are very essential for defining bridge damage state as well as determining the performance of highway bridges under a seismic event. Therefore, realistic damage limit states are required in the development of reliable fragility curves, which are employed in the seismic risk assessment packages for mitigation purposes. In this article, qualitative damage assessment criteria for ordinary highway bridges are taken into account considering the critical bridge components in terms of proper engineering demand parameters (EDPs). Seismic damage of bridges is strongly related to the deformation of bridge components as well as member internal forces imposed due to seismic actions. A simple approach is proposed for determining the acceptance criteria and damage limit states for use in seismic performance and vulnerability assessment of ordinary highway bridges in Turkey constructed after the 1990s. Physical damage of bridge components is represented by three damage limit states: serviceability, damage control, and collapse prevention. Inelastic deformation and shear force demand of the bent components (column and cap beam), and superstructure displacement are the most common causes for the seismic damage of the highway bridges. Each damage limit state is quantified with respect to the EDPs: i.e. curvature and shear force demand of RC bent components and superstructure relative displacement.

Rapid seismic performance assessment method for one story hinged precast buildings

  • Palanci, Mehmet;Senel, Sevket Murat
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.257-274
    • /
    • 2013
  • In this study, seismic performance of one story hinged precast buildings, which represents the majority of existing lightweight industrial building stock of Turkey, was assessed. A lot of precast buildings, constructed in one of the important seismic zones of western Turkey, were investigated and building inventories were prepared. By this method, structural properties of inventory buildings and damaged precast buildings in recent earthquakes were compared. Damage estimations based on nonlinear analysis methods have shown that estimated damage levels of inventory buildings and observed damage levels in recent earthquakes are similar. Accuracy of damage estimation study and the simplicity of the one story precast building models implied that rapid seismic performance assessment method for these buildings can be developed. In this assessment method, capacity curves and vibration periods of precast buildings were calculated by using structural properties of precast buildings. The proposed assessment method was applied to inventory buildings by using two different seismic demand scenarios which reflect moderate and soft soil conditions. Comparison of detailed analysis and rapid assessment methods have indicated that reliable seismic performance estimations can be performed by using proposed method. It is also observed that distribution of damage estimations is compatible in both scenarios.

Regional Seismic Risk Assessment for Structural Damage to Buildings in Korea (국내 건축물 지진피해 위험도의 지역단위 평가)

  • Ahn, Sook-Jin;Park, Ji-Hun;Kim, Hye-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.265-273
    • /
    • 2023
  • This study proposes a methodology for the regional seismic risk assessment of structural damage to buildings in Korea based on evaluating individual buildings, considering inconsistency between the administrative district border and grid lines to define seismic hazard. The accuracy of seismic hazards was enhanced by subdividing the current 2km-sized grids into ones with a smaller size. Considering the enhancement of the Korean seismic design code in 2005, existing seismic fragility functions for seismically designed buildings are revised by modifying the capacity spectrum according to the changes in seismic design load. A seismic risk index in building damage is defined using the total damaged floor area considering building size differences. The proposed seismic risk index was calculated for buildings in 29 administrative districts in 'A' city in Korea to validate the proposed assessment algorithm and risk index. In the validation procedure, sensitivity analysis was performed on the grid size, quantitative building damage measure, and seismic fragility function update.

Decision Making of Seismic Performance Management Using Seismic Risk Assessment (지진위험도평가 방법을 이용한 내진성능관리 의사결정)

  • Kim, Dong Joo;Choi, Ji Hye;Kim, Byeong Hwa
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.6
    • /
    • pp.329-339
    • /
    • 2019
  • The strategy for the management of earthquakes is shifting from post recovery to prevention; therefore, seismic performance management requires quantitative predictions of damage and the establishment of strategies for initial responses to earthquakes. Currently, seismic performance evaluation for seismic management in Korea consists of two stages: preliminary evaluation and detailed evaluation. Also, the priority of seismic performance management is determined in accordance with the preliminary evaluation. As a deterministic method, preliminary evaluation quantifies the physical condition and socio-economic importance of a facility by various predetermined indices, and the priority is decided by the relative value of the indices; however, with the deterministic method it is difficult to consider any uncertainty related to the return-year, epicenter, and propagation of seismic energy. Also this method cannot support tasks such as quantitative socio-economic damage and the provision of data for initial responses to earthquakes. Moreover, indirect damage is often greater than direct damage; therefore, a method to quantify damage is needed to enhance accuracy. In this paper, a Seismic Risk Assessment is used to quantify the cost of damage of road facilities in Pohang city and to support decision making.

Damage-Based Seismic Performance Evaluation of Reinforced Concrete Frames

  • Heo, YeongAe;Kunnath, Sashi K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.175-182
    • /
    • 2013
  • A damage-based approach for the performance-based seismic assessment of reinforced concrete frame structures is proposed. A new methodology for structural damage assessment is developed that utilizes response information at the material level in each section fiber. The concept of the damage evolution is analyzed at the section level and the computed damage is calibrated with observed experimental data. The material level damage parameter is combined at the element, story and structural level through the use of weighting factors. The damage model is used to compare the performance of two typical 12-story frames that have been designed for different seismic requirements. A series of nonlinear time history analyses is carried out to extract demand measures which are then expressed as damage indices using the proposed model. A probabilistic approach is finally used to quantify the expected seismic performance of the building.

Seismic Capacity Evaluation of Existing Structures Incorporating Damage Assessment (구조손상을 고려한 기설구조물의 내진성능평가)

  • Song, Jong Keol;Yi, Jin Hak;Lee, Dong Guen
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.543-553
    • /
    • 2004
  • This paper covered two related subjects: the use of the inverse modal perturbation technique to assess structural damage in existing structures; and the use of a seismic capacity evaluation to assess damaged structures, with the aid of the identified structural damage. The substructural identification and the Tikhonov regularization algorithm were incorporated for efficient damage assessment of complex and large frame structures. The seismic capacity of a damaged structure was evaluated by comparing the structure's seismic responses and seismic damage indices. The effectiveness of the proposed method has been investigated through the numerical simulation study for a twenty-story frame structure with undamaged and damaged cases, and also different earthquake excitations.

Vulnerability assessment and retrofit solutions of precast industrial structures

  • Belleri, Andrea;Torquati, Mauro;Riva, Paolo;Nascimbene, Roberto
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.801-820
    • /
    • 2015
  • The seismic sequence which hit the Northern Italian territory in 2012 produced extensive damage to reinforced concrete (RC) precast buildings typically adopted as industrial facilities. The considered damaged buildings are constituted by one-storey precast structures with RC columns connected to the ground by means of isolated socket foundations. The roof structural layout is composed of pre-stressed RC beams supporting pre-stressed RC floor elements, both designed as simply supported beams. The observed damage pattern, already highlighted in previous earthquakes, is mainly related to insufficient connection strength and ductility or to the absence of mechanical devices, being the connections designed neglecting seismic loads or neglecting displacement and rotation compatibility between adjacent elements. Following the vulnerabilities emerged in past seismic events, the paper investigates the seismic performance of industrial facilities typical of the Italian territory. The European building code seismic assessment methodologies are presented and discussed, as well as the retrofit interventions required to achieve an appropriate level of seismic capacity. The assessment procedure and retrofit solutions are applied to a selected case study.

Modifier parameters and quantifications for seismic vulnerability assessment of reinforced concrete buildings

  • Oumedour, Amira;Lazzali, Farah
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.83-94
    • /
    • 2022
  • In recent years, some studies have identified and quantified factors that can increase or decrease the seismic vulnerability of buildings. These modifier factors, related to the building characteristics and condition, are taken into account in the vulnerability assessment, by means of a numerical estimation resulting from the quantification of these modifiers through vulnerability indexes. However, views have differed on the definition and the quantification of modifiers. In this study, modifier parameters and scores of the Risk-UE Level 1 method are adjusted based on the Algerian seismic code recommendations and the reviews proposed in the literature. The adjusted modifiers and scores are applied to reinforced concrete (RC) buildings in Boumerdes city, in order to assess probable seismic damage. Comparison between estimated damage and observed damage caused by the 2003 Boumerdes earthquake is done, with the objective to (i) validate the model involving influence of the modifier parameters on the seismic vulnerability, and (ii) to define the relationship between modifiers and damage. This research may help planners in improving seismic regulations and reducing vulnerability of existing buildings.

Insights from existing earthquake loss assessment research in Croatia

  • Hadzima-Nyarko, Marijana;Sipos, Tanja Kalman
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.365-375
    • /
    • 2017
  • Seismic risk management has two main technical aspects: to recommend the construction of high-performance buildings and other structures using earthquake-resistant designs or evaluate existing ones, and to prepare emergency plans using realistic seismic scenarios. An overview of seismic risk assessment methodologies in Croatia is provided with details regarding the components of the assessment procedures: hazard, vulnerability and exposure. For Croatia, hazard is presented with two maps and it is expressed in terms of the peak horizontal ground acceleration during an earthquake, with the return period of 95 or 475 years. A standard building typology catalogue for Croatia has not been prepared yet, but a database for the fourth largest city in Croatia is currently in its initial stage. Two methods for earthquake vulnerability assessment are applied and compared. The first is a relatively simple and fast analysis of potential seismic vulnerability proposed by Croatian researchers using damage index (DI) as a numerical value indicating the level of structural damage, while the second is the Macroseismic method.