• Title/Summary/Keyword: seismic characteristics

Search Result 1,458, Processing Time 0.027 seconds

A Geophysical Study of a Deep sea basin southeast of the Hawaiian Island: Gravity, Magnetic, and Seismic Profiling (Hawaii 동남부 심해저 분지에 대한 지구물리학적 연구 : 중력, 자력 및 탄성파 탐사)

  • 서만철;박찬홍
    • 한국해양학회지
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 1991
  • A multi-disciplinary geophysical study including gravity, magnetic, and seismic reflection profiling was carried out in the area between the Clarion fracture zone and the Clippertone fracture zone o the northeastern equatorial Pacific basin. There are small free-air gravity anomalies of less than 20 mgal over seamounts and the east-west trending abyssal hills. The negative residual gravity anomalies over seamounts may indicate the existence of low density seamount roots compared to surrounding oceanic crust. Non-existence of magnetic lineations and the magnetic anomalies of small smplitude with no polarity change in the east-west direction support that the study area belongs to the Cretaceous magnetic quite zone. Positive magnetic anomalies over seamounts offset 100 km in the east-west direction in the southern part of the study area suggest a possibility of left-lateral movement of those seamounts along unknown fractures. The sedimentary section in the study area can be divided into three units (Unit I, unit IIA, and Unit IIB) n the basis of reflection characteristics. the total thickness of sedimentary section varies from 200 to 400 meters and the sedimentary section is thicker in the southern area of rough topography near the seamount belt than in the northern flat area. Manganese nodules are abundant in the southern part of the study area where the ridges are developed and the Unit I layer is thicker than 100 meters.

  • PDF

Transverse Reinforcement for Circular Internally Confined Hollow RC column (원형 내부 구속 중공 RC 기둥의 심부 구속 횡방향 철근 연구)

  • Won, Deok Hee;Han, Taek Hee;Park, Woo Sun;Park, Jong Sub;Kang, Young Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.927-935
    • /
    • 2013
  • Recently, bridge structures has progressed the researches about seismic performance by occurrence of earthquake increased compared with the past. In the substructure of bridge, confining transverse reinforcement has arranged in plastic hinge region to resist the lateral load which increased the lateral confining effect. Columns are increased the seismic performance through secure of the stiffness and ductility The design specification for arrangement of confining transverse reinforcement same specification of domestic and international that suggested to solid reinforced concrete column(RC). This design specification have limits for Internally Confined Hollow RC(ICH RC) column because of different the component and performance characteristics of column. In this paper suggested the modified equation for economics and rational design through investigation of displacement ductility when applied the existing specification at the steel composite hollow RC column.

Observation of behavior of the Ahlat Gravestones (TURKEY) at seismic risk and their recognition by QR code

  • Isik, Ercan;Antep, Baris;Buyuksarac, Aydin;Isik, Mehmet Fatih
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.643-652
    • /
    • 2019
  • Protection of cultural heritage and carrying it to the future are at the top of the significant topics of research and implementation in engineering in the 21st century. There are several historical structures in the district of Ahlat located in the east of Turkey on the Lake Van Basin that has harbored many civilizations. Some of such works are the gravestones that are found in the Ahlat Seljuk Cemetery, which is the oldest and largest cemetery in the district. This study firstly provides information about the Ahlat Seljuk Cemetery and the gravestones found in it. Observation-based structural analyses were carried out on these gravestones that are found in this area that are known to have belonged to different civilizations based on their physical and constructional characteristics. These stones were built out of Ahlat stone as single pieces. Information is provided on the damages that have occurred on the gravestones in time and their causes. In general, losses of mass, abrasions, separations, collapses and calcifications due to natural conditions, as well as vegetative formations, were observed in the gravestones. To provide an example of other gravestones within the context of the study, the gravestone that is known to belong to the person named Nureddin Ebu Hasan was selected. As a result of the modeling that was carried out for this gravestone by using the finite elements method, modal analyses were carried out. With these analyses, for the gravestone, period, effective mass participation rates and stress values were calculated. The stress values that were obtained in this study were compared to the material safety stress values that were obtained in previous studies. Additionally, QR code application was created for the gravestone that was selected as an example in the study, and information on this gravestone was transferred to an electronic environment. The QR code application includes different language options, visuals of the gravestone and information on the gravestone. The QR application was also supported with a video of the cemetery where the gravestone is located. With this application, access to information about gravestones will be possible by using tablets and smartphones. With a QR code to be created for each gravestone, these gravestones will obtain identity cards.

Target Detection Algorithm Based on Seismic Sensor for Adaptation of Background Noise (배경잡음에 적응하는 진동센서 기반 목표물 탐지 알고리즘)

  • Lee, Jaeil;Lee, Chong Hyun;Bae, Jinho;Kwon, Jihoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.258-266
    • /
    • 2013
  • We propose adaptive detection algorithm to reduce a false alarm by considering the characteristics of the random noise on the detection system based on a seismic sensor. The proposed algorithm consists of the first step detection using kernel function and the second step detection using detection classes. Kernel function of the first step detection is obtained from the threshold of the Neyman-Pearon decision criterion using the probability density functions varied along the noise from the measured signal. The second step detector consists of 4 step detection class by calculating the occupancy time of the footstep using the first detected samples. In order to verify performance of the proposed algorithm, the detection of the footsteps using measured signal of targets (walking and running) are performed experimentally. The detection results are compared with a fixed threshold detector. The first step detection result has the high detection performance of 95% up to 10m area. Also, the false alarm probability is decreased from 40% to 20% when it is compared with the fixed threshold detector. By applying the detection class(second step detector), it is greatly reduced to less than 4%.

An overview of R&D for the natural gas hydrate of new energy in the 21st century : a vision of the multi-year project in Korea (21세기 신 에너지 가스 하이드레이트 연구 및 기술개발 현황 : 국내의 중장기 개발 방향)

  • Lee Young Chul;Baek Young Soon;Cho Byoung Hak;Park Ki Whan;Ru Byong Jae
    • The Korean Journal of Petroleum Geology
    • /
    • v.7 no.1_2 s.8
    • /
    • pp.19-27
    • /
    • 1999
  • Korea, an energy-resources-poor country, imports $100{\%}$ of its, oil and, natural gas supply, which accounts for the greater part of its total primary requirements. One of the important task of the government is diversification of available energy resources such as oil and natural gas. Natural gas hydrate, which is non-conventional types of natural gas, distributes worldwide, especially in marine and permafrost. It would become a target of natural gas resources in the near future. Especially sigrificant amount of hydrates are expected to be located in the East Sea around Korea Peninsular. This paper describes about a multi-year overall project framework of basic research and technological development of natural gas hydrate in Korea focused on the interpretation of the seismic survey, the characteristics and physical properties of the natural gas hydrate, and the utilizable technology of natural gas hydrates from the status of research and development of the world.

  • PDF

A Study on Magnitude Scaling Factors and Screening Limits of Liquefaction Potential Assessment in Moderate Earthquake Regions (중진지역에 적합한 액상화 평가 생략기준 및 지진규모 보정계수에 관한 연구)

  • Park Keun-Bo;Park Young-Geun;Choi Jae-Soon;Kim Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.127-140
    • /
    • 2004
  • Conventional methods for the assessment of liquefaction potential were primarily for areas of severe earthquake zones (M=7.5) such as North America and Japan. Detailed earthquake related researches in Korea started in 1997, including development of the seismic design standards for port and harbour structures, which was later completed in 1999. Because most contents in the guidelines were quoted through literature reviews from North America and Japan, which are located in strong earthquake region, those are not proper in Korea, a moderate earthquake region. This requires further improvement of the present guidelines. Considering earthquake hazard data in Korea, use of laboratory tests based on irregular earthquake motion appears to be effective to reflect the dynamic characteristics of soil more realistically than those using simplified regular loading. In this study, cyclic triaxial tests using irregular earthquake motions are performed with different earthquake magnitudes, relative densities, and fines contents. Assessment of liquefaction potential in moderate earthquake regions is discussed based on various laboratory test results. Effects of these components on dynamic behavior of soils are discussed as well. From the test results, screening limits and magnitude scaling factors to determine the soil liquefaction resistance strength in seismic design were re-investigated and proposed using normalized maximum stress ratios under real irregular earthquake motions.

Semi-active storey isolation system employing MRE isolator with parameter identification based on NSGA-II with DCD

  • Gu, Xiaoyu;Yu, Yang;Li, Jianchun;Li, Yancheng;Alamdari, Mehrisadat Makki
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1101-1121
    • /
    • 2016
  • Base isolation, one of the popular seismic protection approaches proven to be effective in practical applications, has been widely applied worldwide during the past few decades. As the techniques mature, it has been recognised that, the biggest issue faced in base isolation technique is the challenge of great base displacement demand, which leads to the potential of overturning of the structure, instability and permanent damage of the isolators. Meanwhile, drain, ventilation and regular maintenance at the base isolation level are quite difficult and rather time- and fund- consuming, especially in the highly populated areas. To address these challenges, a number of efforts have been dedicated to propose new isolation systems, including segmental building, additional storey isolation (ASI) and mid-storey isolation system, etc. However, such techniques have their own flaws, among which whipping effect is the most obvious one. Moreover, due to their inherent passive nature, all these techniques, including traditional base isolation system, show incapability to cope with the unpredictable and diverse nature of earthquakes. The solution for the aforementioned challenge is to develop an innovative vibration isolation system to realise variable structural stiffness to maximise the adaptability and controllability of the system. Recently, advances on the development of an adaptive magneto-rheological elastomer (MRE) vibration isolator has enlightened the development of adaptive base isolation systems due to its ability to alter stiffness by changing applied electrical current. In this study, an innovative semi-active storey isolation system inserting such novel MRE isolators between each floor is proposed. The stiffness of each level in the proposed isolation system can thus be changed according to characteristics of the MRE isolators. Non-dominated sorting genetic algorithm type II (NSGA-II) with dynamic crowding distance (DCD) is utilised for the optimisation of the parameters at isolation level in the system. Extensive comparative simulation studies have been conducted using 5-storey benchmark model to evaluate the performance of the proposed isolation system under different earthquake excitations. Simulation results compare the seismic responses of bare building, building with passive controlled MRE base isolation system, building with passive-controlled MRE storey isolation system and building with optimised storey isolation system.

Marine Controlled-source Electromagnetic Surveys for Hydrocarbon Exploration (탄화수소 탐지를 위한 해양 인공송신원 전자탐사)

  • Kim, Hee-Joon;Han, Nu-Ree;Choi, Ji-Hyang;Nam, Myung-Jin;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.2
    • /
    • pp.163-170
    • /
    • 2006
  • The shortage of proven hydrocarbon reserves has resulted in exploration progressing from the offshore into progressively deeper water of the continental shelf. Despite the success of seismic acquisition at ever greater depths, there are marine geological terrenes in which the interpretation of seismic data is difficult, such regions dominated by scattering or high reflectivity that is characteristic of carbonate reefs, volcanic cover and submarine permafrost. A marine controlled-source electromagnetic (CSEM) method has recently been applied to the oil and gas exploration thanks to its high-resistivity characteristics of the hydrocarbon. In particular, this method produces better results in terms of sensitivity under the deep water environment rather than the shallow water. Only in the last five years has the relevance of CSEM been recognized by oil companies who now use it to help them make exploration drilling decisions. Initial results are most promising and several contractors now offer magnetotelluric and CSEM services.

Study on the limitation of AVO responses shown in the seismic data from East-sea gas reservoir (동해 가스전 탄성파 자료에서 나타나는 AVO 반응의 한계점에 대한 고찰)

  • Shin, Seung-Il;Byun, Joong-Moo;Choi, Hyung-Wook;Kim, Geon-Deuk;Ko, Seung-Won;Seo, Young-Tak;Cha, Young-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.107-112
    • /
    • 2008
  • In the case of the deep reservoirs like the gas reservoirs in the East-sea, it is often difficult to observe AVO responses in CMP gathers. Because the reservoir becomes more consolidated as its depth deepens, P-wave velocity does not decrease significantly when the pore fluid is replaced by the gas. In this study, we analyzed the effects of Poisson's ratio difference on AVO response with a variety of Poisson's ratios for the upper and lower layers. The results show that, as the difference in Poisson's ratio between the upper and lower layers decreases, the change in the reflection amplitude with incidence angle decreases. To consider the limitation of AVO responses shown in the gas reservoir in East-sea, the velocity model was made by simulation Gorae V structure with seismic data and well logs. The results of comparing AVO responses observed from the synthetic data with theoretical AVO responses calculated by using material properties show that the amount of the change in reflection amplitude with increasing incident angle is very small when the difference in Poisson's ratio between the upper and lower layers is small. In addition, the characteristics of AVO responses were concealed by noise or amplitude distortion arisen during preprocessing. To overcome such limitations of AVO analysis of the data from deep reservoirs, we need to acquire precisely reflection amplitudes in data acquisition stage and use processing tools which preserve reflection amplitude in data processing stage.

  • PDF

Seismic First Arrival Time Computation in 3D Inhomogeneous Tilted Transversely Isotropic Media (3차원 불균질 횡등방성 매질에 대한 탄성파 초동 주시 모델링)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.241-249
    • /
    • 2006
  • Due to the long tectonic history and the very complex geologic formations in Korea, the anisotropic characteristics of subsurface material may often change very greatly and locally. The algorithms commonly used, however, may not give sufficiently precise computational results of traveltime data particularly for the complex and strong anisotropic model, since they are based on the two-dimensional (2D) earth and/or weak anisotropy assumptions. This study is intended to develope a three-dimensional (3D) modeling algorithm to precisely calculate the first arrival time in the complex anisotropic media. Considering the complex geology of Korea, we assume 3D TTI (tilted transversely isotropy) medium having the arbitrary symmetry axis. The algorithm includes the 2D non-linear interpolation scheme to calculate the traveltimes inside the grid and the 3D traveltime mapping to fill the 3D model with first arrival times. The weak anisotropy assumption, moreover, can be overcome through devising a numerical approach of the steepest descent method in the calculation of minimum traveltime, instead of using approximate solution. The performance of the algorithm developed in this study is demonstrated by the comparison of the analytic and numerical solutions for the homogeneous anisotropic earth as well as through the numerical experiment for the two layer model whose anisotropic properties are greatly different each other. We expect that the developed modeling algorithm can be used in the development of processing and inversion schemes of seismic data acquired in strongly anisotropic environment, such as migration, velocity analysis, cross-well tomography and so on.