• Title/Summary/Keyword: seismic behaviour

Search Result 275, Processing Time 0.021 seconds

Effect of modeling assumptions on the seismic behavior of steel buildings with perimeter moment frames

  • Reyes-Salazar, Alfredo;Soto-Lopez, Manuel Ernesto;Bojorquez-Mora, Eden;Lopez-Barraza, Arturo
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.183-204
    • /
    • 2012
  • Several issues regarding the structural idealization of steel buildings with perimeter moment resisting steel frames (MRSFs) and interior gravity frames (GFs) are studied. Results indicate that the contribution of GFs to the lateral structural resistance may be significant. The contribution increases when the stiffness of the connection of the GFs is considered and is larger for inelastic than for elastic behavior. The interstory shears generally increase when the connections stiffness is taken into account. Resultant stresses at some base columns of MRSFs also increase in some cases but to a lesser degree. For columns of the GFs, however, the increment is significant. Results also indicate that modeling the building as planes frames may result in larger interstory shears and displacements and resultant stresses than those obtained from the more realistic 3-D formulation. These differences may be much larger when semi-rigid (SR) connections are considered. The conservativism is more for resultant stresses. The differences observed in the behaviour of each structural representation are mainly due to a) the elements that contribute to strength and stiffness and b) the dynamics characteristics of each structural representation. It is concluded that, if the structural system under consideration is used, the three-dimensional model should be used in seismic analysis, the GFs should be considered as part of the lateral resistance system, and the stiffness of the connections should be included in the design of the GFs. Otherwise, the capacity of gravity frames may be overestimated while that of MRSFs may be underestimated.

A Study on the Dynamic Behaviour of Cut-and-Cover Tunnel by Shaking Table Test (진동대 실험을 이용한 개착식터널의 동적 거동특성에 관한 연구)

  • 정형식;조병완;이영남;이두화;이용준
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.173-180
    • /
    • 2001
  • This research is aimed at investigating the dynamic response of cut-and-cover tunnel to seismic waves. We carried out shaking table test which is used a 1/40-scale(the width of prototype tunnel is about 14.2m, the height is about 8.5m) model for this research, and we analyzed the effect of depth of tunnel and slope of the ground in relation to the dynamic responses of tunnel. As a result of the test, the stress and acceleration along the tunnel decreased accordingly to the depth of increment, and this phenomenon is caused by the increase of the confining effect of ground. Also, the dynamic responses of tunnel showed a tendency to rise according as ground declined gently. In comparison the result of shaking table test with that of structural analysis on ordinary condition, we conclude that seismic waves do not affect cut-and-cover tunnel when the depth of tunnel is over the diameter of tunnel.

  • PDF

Evaluation of numerical procedures to determine seismic response of structures under influence of soil-structure interaction

  • Tabatabaiefar, Hamid Reza;Fatahi, Behzad;Ghabraie, Kazem;Zhou, Wan-Huan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.27-47
    • /
    • 2015
  • In this study, the accuracy and reliability of fully nonlinear method against equivalent linear method for dynamic analysis of soil-structure interaction is investigated comparing the predicted results of both numerical procedures with the results of experimental shaking table tests. An enhanced numerical soil-structure model has been developed which treats the behaviour of the soil and the structure with equal rigour. The soil-structural model comprises a 15 storey structural model resting on a soft soil inside a laminar soil container. The structural model was analysed under three different conditions: (i) fixed base model performing conventional time history dynamic analysis, (ii) flexible base model (considering full soil-structure interaction) conducting equivalent linear dynamic analysis, and (iii) flexible base model performing fully nonlinear dynamic analysis. The results of the above mentioned three cases in terms of lateral storey deflections and inter-storey drifts are determined and compared with the experimental results of shaking table tests. Comparing the experimental results with the numerical analysis predictions, it is noted that equivalent linear method of dynamic analysis underestimates the inelastic seismic response of mid-rise moment resisting building frames resting on soft soils in comparison to the fully nonlinear dynamic analysis method. Thus, inelastic design procedure, using equivalent linear method, cannot adequately guarantee the structural safety for mid-rise building frames resting on soft soils. However, results obtained from the fully nonlinear method of analysis fit the experimental results reasonably well. Therefore, this method is recommended to be used by practicing engineers.

Direct displacement based seismic design for single storey steel concentrically braced frames

  • Salawdeh, Suhaib;Goggins, Jamie
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1125-1141
    • /
    • 2016
  • The direct displacement based design (DDBD) approach is spreading in the field of seismic design for many types of structures. This paper is carried out to present a robust approach for the DDBD procedure for single degree of freedom (SDOF) concentrically braced frames (CBFs). Special attention is paid to the choice of an equivalent viscous damping (EVD) model that represents the behaviour of a series of full scale shake table tests. The performance of the DDBD methodology of the CBFs is verified by two ways. Firstly, by comparing the DDBD results with a series of full-scale shake table tests. Secondly, by comparing the DDBD results with a quantified nonlinear time history analysis (NLTHA). It is found that the DDBD works relatively well and could predict the base shear forces ($F_b$) and the required brace cross sectional sizes of the actual values obtained from shake table tests and NLTHA. In other words, when comparing the ratio of $F_b$ estimated from the DDBD to the measured values in shake table tests, the mean and coefficient of variation ($C_V$) are found to be 1.09 and 0.12, respectively. Moreover, the mean and $C_V$ of the ratios of $F_b$ estimated from the DDBD to the values obtained from NLTHA are found to be 1.03 and 0.12, respectively. Thus, the DDBD methodology presented in this paper has been shown to give accurate and reliable results.

Seismic response of non-structural components attached to reinforced concrete structures with different eccentricity ratios

  • Aldeka, Ayad B.;Dirar, Samir;Chan, Andrew H.C.;Martinez-Vazquez, Pedro
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1069-1089
    • /
    • 2015
  • This paper presents average numerical results of 2128 nonlinear dynamic finite element (FE) analyses of lightweight acceleration-sensitive non-structural components (NSCs) attached to the floors of one-bay three-storey reinforced concrete (RC) primary structures (P-structures) with different eccentricity ratios. The investigated parameters include the NSC to P-structure vibration period ratio, peak ground acceleration, P-structure eccentricity ratio, and NSC damping ratio. Appropriate constitutive relationships were used to model the behaviour of the RC P-structures. The NSCs were modelled as vertical cantilevers fixed at their bases with masses on the free ends and varying lengths so as to match the vibration periods of the P-structures. Full dynamic interaction was considered between the NSCs and P-structures. A set of seven natural bi-directional ground motions were used to evaluate the seismic response of the NSCs. The numerical results show that the acceleration response of the NSCs depends on the investigated parameters. The accelerations of the NSCs attached to the flexible sides of the P-structures increased with the increase in peak ground acceleration and P-structure eccentricity ratio but decreased with the increase in NSC damping ratio. Comparison between the FE results and Eurocode 8 (EC8) predictions suggests that, under tuned conditions, EC8 provisions underestimate the seismic response of the NSCs mounted on the flexible sides of the plan-irregular RC P-structures.

Experimental seismic behaviour of L-CFST column to H-beam connections

  • Zhang, Wang;Chen, Zhihua;Xiong, Qingqing;Zhou, Ting;Rong, Xian;Du, Yansheng
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.793-808
    • /
    • 2018
  • In this study, the seismic performance of the connections between L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) and H-beams used in high-rise steel frame structures was investigated. Seven full-scale specimens were tested under quasi-static cyclic loading. The variables studied in the tests included the joint type, the axial compression ratio, the presence of concrete, the width-to-thickness ratio and the internal extension length of the side plates. The hysteretic response, strength degradation, stiffness degradation, ductility, plastic rotation capacity, energy dissipation capacity and the strain distribution were evaluated at different load cycles. The test results indicated that both the corner and exterior joint specimens failed due to local buckling and crack within the beam flange adjacent to the end of the side plates. However, the failure modes of the interior joint specimens primarily included local buckling and crack at the end plates and curved corners of the beam flange. A design method was proposed for the flexural capacity of the end plate connection in the interior joint. Good agreement was observed between the theoretical and test results of both the yield and ultimate flexural capacity of the end plate connection.

A preliminary numerical analysis on the behaviour of tunnel under construction in fracture zone considering seismic load (지진 하중을 고려한 단층파쇄대에서의 시공 중 터널 거동 분석에 관한 수치해석적 연구)

  • Oh, Dong-Wook;Hong, Soon-Kyo;Kim, Dae-Kon;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.279-299
    • /
    • 2019
  • Recently occurred earthquake Gyeongju and Pohang served as a momentum to remind that Korean peninsular is not a safety zone from earthquake anymore. The importance of seismic design, therefore, have been realized and researches regarding design response spectrum have been actively carried out by many researchers and engineers. Current tunnel seismic design method is conducted to check safety of tunnel structure by dynamic numerical analysis with condition of completed lining installation, so, it is impossible to consider safety of tunnel behavior under construction. In this study, therefore, dynamic numerical analysis considering seismic wave propagations has been performed after back analysis using results from field monitoring of tunnel under construction in fractured zone and 1st reinforcement (shotcrete, rockbolt) behaviour are analyzed. Waves are classified by period characteristic (short and long). As a result, the difference depending on period characteristic is minor, and increasements of displacement are obtained at crown displacement due to seismic wave is 28~31%, 14~16% at left side of tunnel in the fractured zone, 13~27% at right side of tunnel in the bed rock, respectively. In case of shotcrete axial force is increased 113~115% at tunnel crown, 102% at left side, 106~110% at right side, respectively. Displacement and axial force of rockbolts which are selected by type of anchored grounds (only fractured zone, fractured zone and bed rock, only bedrock) are analyzed, as a result, rockbolt which is anchored to fractured zone and bed rock at the same time are weaker than any other case.

Behaviour of Shear Wall Structures with Energy Dissipation Device in Coupling Beam (연결보에 감쇠장치를 적용한 전단벽식 구조물의 거동특성)

  • Kim, Jin-Sang;Yoon, Tae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.21-30
    • /
    • 2018
  • Building structures of apartment in korea conventionally adopt shear walls using coupling beams as seismic force-resisting systems. Energy dissipating devices employed the building structures are used instead of the coupling beams in order to increase the seismic performances by providing additional damping and stiffness. This study aims to introduce energy dissipating devices which are preferred in structural system and aims to investigate structural behaviors of shear wall structures employing such devices instead of coupling beams. In order for achieve research objectives, Finite Element Analysis and Nonlinear analysis was carry out. Finite Element Analysis results was correspond with experimental results and this is indicated that the device can provide sufficient additional damping and stiffness into shear wall structures. Throughout nonlinear static analyses, examples structures with the devices can enhance seismic performance of building structures due to their sufficient energy dissipating capacities. Especially, strength and ductility capacities were significantly improved when it is compared with the performance of building structures without the devices. Throughout nonlinear dynamic analyses, it was observed that structural damages can be mitigated due to reduced seismic demands for seismic force-resisting systems. It is especially noted due to the fact that story drifts, accelerations, shear demands are reduced by 15~18%, 20~28% and 15~20%, respectively.

Numerical simulation of tested reinforced concrete beams strengthened by thin fibre-reinforced cementitious matrix jackets

  • Georgiadi-Stefanidi, K.;Mistakidis, E.;Perdikaris, P.;Papatheocharis, T.
    • Earthquakes and Structures
    • /
    • v.1 no.4
    • /
    • pp.345-370
    • /
    • 2010
  • The paper presents a study on the numerical simulation of the behaviour of conventional reinforced concrete (RC) beams strengthened by thin fibre-reinforced cementitious matrix (FRCM) jackets. The study covers the cases of retrofitting RC beams with or without stirrups with jackets reinforced with longitudinal and transverse steel reinforcement or with light wire mesh. The strengthened RC beams to be modelled were tested under static monotonic and fully reversing cyclic loading. The numerical results show that the numerical model used predicted quite well the experimental results.

A study on the behaviour of coupled shear walls

  • Bhunia, Dipendu;Prakash, Vipul;Pandey, Ashok D.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.645-675
    • /
    • 2012
  • An effective design technique for symmetrical coupled shear walls is presented. Proposed formulation including assumptions and steps with mathematical formulation has been elaborated to make the design technique. An example has been considered to validate the technique with the DRAIN-3DX (1993) and SAP V 10.0.5 (2000) nonlinear programs. Parametric study has also been considered to find out the limitations along with remedial action of this technique. On the other hand, nonlinear static analysis is considered to determine the response reduction factor of coupled shear walls. Finally, it has been concluded in this paper that the proposed design technique can be considered to design the coupled shear walls under seismic motion.