• Title/Summary/Keyword: seismic behaviors

Search Result 272, Processing Time 0.025 seconds

Seismic rehabilitation of substandard RC columns with partially deteriorated concrete using CFRP composites

  • Hou, Dongxu;Wu, Zhimin;Zheng, Jianjun;Cui, Yao
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.1-20
    • /
    • 2015
  • Many existing reinforced concrete (RC) columns in structures tend to become substandard RC ones due to updated standards or environmental changes. These substandard columns may alter the behaviors of the whole structure and therefore are in urgent need of seismic retrofitting. Owing to their superior advantages, carbon fiber reinforced polymer (CFRP) composites are widely used to retrofit RC columns. The applications mainly focus on various substandard RC columns, but few deals with substandard columns with deteriorated concrete, especially damaged by earthquake. The purpose of this paper is to investigate the seismic behaviors of CFRP reinforced partially deteriorated RC columns and to evaluate the effect of CFRP sheets on them. Six flexure-dominant columns were tested under a constant axial load and transverse cyclic displacements. It is found that the seismic behaviors of partially deteriorated columns can be recovered by wrapping CFRP sheets on them. Numerical analysis is then conducted using finite element methods and verified with experimental results. The effects of the axial load ratio, the ratio of the thickness of CFRP sheet to the column diameter, and the slenderness ratio on the seismic behaviors of CFRP reinforced RC columns are evaluated. Finally, a method is proposed to determine the required thickness of CFRP sheet.

Seismic Analysis on Recycled Aggregate Concrete Frame Considering Strain Rate Effect

  • Wang, Changqing;Xiao, Jianzhuang;Sun, Zhenping
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.307-323
    • /
    • 2016
  • The nonlinear behaviors of recycled aggregate concrete (RAC) frame structure are investigated by numerical simulation method with 3-D finite fiber elements. The dynamic characteristics and the seismic performance of the RAC frame structure are analyzed and validated with the shaking table test results. Specifically, the natural frequency and the typical responses (e.g., storey deformation, capacity curve, etc.) from Model 1 (exclusion of strain rate effect) and Model 2 (inclusion of strain rate effect) are analyzed and compared. It is revealed that Model 2 is more likely to provide a better match between the numerical simulation and the shaking table test as key attributes of seismic behaviors of the frame structure are captured by this model. For the purpose to examine how seismic behaviors of the RAC frame structure vary under different strain rates in a real seismic situation, a numerical simulation is performed by varying the strain rate. The storey displacement response and the base shear for the RAC frame structure under different strain rates are investigated and analyzed. It is implied that the structural behavior of the RAC frame structure is significantly influenced by the strain rate effect. On one hand, the storey displacements vary slightly in the trend of decreasing with the increasing strain rate. On the other hand, the base shear of the RAC frame structure under dynamic loading conditions increases with gradually increasing amplitude of the strain rate.

Performance evaluation of composite moment-frame structures with seismic damage mitigation systems using wavelet analyses

  • Kaloop, Mosbeh R.;Son, Hong Min;Sim, Hyoung-Bo;Kim, Dongwook;Hu, Jong Wan
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.201-214
    • /
    • 2020
  • This study aims at evaluating composite moment frame structures (CFS) using wavelet analysis of the displacement behavior of these structures. Five seismic damage mitigation systems' models of 9-story CFS are examined namely, basic (Model 1), reinforced (Model 2), buckling restrained braced (BRB) (Model 3), lead rubber bearing (LRB) (Model 4), and composite (Model 5) moment frames. A novel integration between continuous and discrete wavelet transforms is designed to estimate the wavelet power energy and variance of measurements' behaviors. The behaviors of the designed models are evaluated under influence of four seismic loads to study the dynamic performance of CFS in the frequency domain. The results show the behaviors of models 3 and 5 are lower than other models in terms of displacement and frequency performances. Model 3 has been shown lower performances in terms of energy and variance wavelets along the monitoring time; therefore, Model 3 demonstrates superior performance and low probability of failure under seismic loads. Furthermore, the wavelet variance analysis is shown a powerful tool that can be used to assess the CFS under seismic hazards.

Effects of Foundation Motions on Dynamic Behaviors of a Bridge under Seismic Excitations (교량거동에 미치는 기초의 회전 및 병진운동의 영향)

  • 김상효;마호성;함형진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.216-222
    • /
    • 1998
  • Effects of translational and rotational motions of the foundation on the dynamic behaviors of a bridge under seismic excitations are examined by utilizing a simplified 3 degree-of-freedom of system. To consider the nonlinear characteristics of the RC pier, a hysteresis model is adapted, which can simulate the inelastic motion of the pier with the stiffness degradation. From results, the portion of the total displacement due to rotational motion of the foundation becomes larger as applied seismic excitation increases.

  • PDF

Dymamic Behavior of Large Concrete Panel Structures Subjected Seismic Loads (지진하중을 받는 대형 콘크리트 판구조의 동적거동-3층 입체구조의 진동실험결과를 중심으로)

  • 서수연;박병순;백용준;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.148-153
    • /
    • 1993
  • The paper presents the results of shaking table test conducted on the 1/3.3 scaled large concrete panel model. The behaviors of large concrete panel structures subjected to seismic excitations are controlled by capacity of horizontal and vertical joints. To Study the seismic capacity of the large concrete panel structures, experimental researches for joints and structural assemblage are needed. Especially, since the magnitude of seismic loads are depended on the variation of time, period and accelerations, dynamic test is needed for estimating the seismic resistance of large concrete panel structures. The objective of this paper is to study the behaviors of large concrete panel structures on seismic excitations and to estimate the safety. Test results are as follows : 1) Test model was critically damaged in the first floor horizontal joint by rocking. 2) Elastic limit(0.12kg) of test model was 5times higher than that of korean seismic design code. 3) Maxium base shear of test model at the ground acceleration of 0.12g was 3.5 times higher than the result of equivalent static analysis. 4) Damping ratio of test model turned out 3.9~5.3% and the period at 0.12g was 0.065sec.

  • PDF

Dynamic Behavior Analyses of Bridges under Seismic Excitations in 2-Dimensional Directions (이차원 지진성분을 고려한 교량시스템의 지진거동분석)

  • 김상효
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.333-340
    • /
    • 2000
  • Dynamic response behaviors of a bridge are examined under seismic excitations in the 2-dimensional directions are examined. A three-dimensional mechanical model is utilized and the corresponding equations of motions are derived to consider the two directional bridge motions due to the randomness residing in the excitation directions. The arbitrary 2-dimensional directions are simulated by applying two independent excitations in the two directions: main direction(longitudinal) ; the additive direction normal to the main (transverse). The rotational superstructure motions due to the spacial motions of the bridge are considered by admitting the deformation of the bearings at supports. The relative displacement to the ground motions and the relative distance between adjacent oscillators are found to be increased by a considerable amount in the case when considering arbitrary directional seismic excitations. It is also found that the piermotions show more complicated behaviors due to the arbitrary seismic directions.

  • PDF

General Framework for Risk-based Seismic Design (위험도 기반 내진 설계의 일반적인 프레임워크)

  • 장승필;오윤숙;김남희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.285-291
    • /
    • 2002
  • This paper proposes the concept and the general framework of the risk-based seismic design. Because earthquakes and the behaviors of structures are very unpredictable, probabilistic seismic design methods have been proposed after deterministic design methods. Considering these changes, we can find that the important point of seismic design is not the structural behavior itself, but the consequence of structural behavior under possible earthquakes. Risk-based seismic design can tell these consequences under any earthquakes. In this paper, structural confidences are considered by using fragility curve, and risk is modeled by failure probability and consequence-property damage cost, casualty cost.

  • PDF

A numerical investigation of seismic performance of large span single-layer latticed domes with semi-rigid joints

  • Zhang, Huidong;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.57-75
    • /
    • 2013
  • It is still inadequate for investigating the highly nonlinear and complex mechanical behaviors of single-layer latticed domes by only performing a force-based demand-capacity analysis. The energy-based balance method has been largely accepted for assessing the seismic performance of a structure in recent years. The various factors, such as span-to-rise ratio, joint rigidity and damping model, have a remarkable effect on the load-carrying capacity of a single-layer latticed dome. Therefore, it is necessary to determine the maximum load-carrying capacity of a dome under extreme loading conditions. In this paper, a mechanical model for members of the semi-rigidly jointed single-layer latticed domes, which combines fiber section model with semi-rigid connections, is proposed. The static load-carrying capacity and seismic performance on the single-layer latticed domes are evaluated by means of the mechanical model. In these analyses, different geometric parameters, joint rigidities and roof loads are discussed. The buckling behaviors of members and damage distribution of the structure are presented in detail. The sensitivity of dynamic demand parameters of the structures subjected to strong earthquakes to the damping is analyzed. The results are helpful to have a better understanding of the seismic performance of the single-layer latticed domes.

Evaluation of Seismic Behavior for Masonry Infilled RC Moment Resisting Frame with Openings (개구부가 있는 비내력벽을 고려한 저층 RC골조구조물의 지진거동 평가)

  • Ko, Hyun;Park, Yong-Koo;Lee, Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.483-489
    • /
    • 2008
  • Masonry infill walls are frequently used as interior partitions and exterior walls in low- or middlerise RC buildings In the structural design and assessment of structural behaviors of buildings, the infill walls are usually treated as non-structural elements and they are ignored in analytical models. In this study, seismic behaviors of RC frame with/without masonry infill walls were investigated. To this end, the infill walls were modeled as equivalent diagonal struts. Based on analytical results, it has been shown that masonry infill walls can increase the global strength and stiffness of a structure. Accordingly, inter-story drift ratio will be decreased but seismic forces applied to the structure were increased than design seismic load because natural period of the structure was decreased. It is also seen from the analytical results that the inelastic deformation of RC frame with soft story is concentrated on the first story columns and thus, partial damage may have possibility of collapse of system.

  • PDF

Seismic behaviors of twin tunnel with flexible segment (Flexible Segment가 설치된 병렬터널의 지진시 동적거동)

  • Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.695-702
    • /
    • 2015
  • Recently, the improvement of mechanical and theoretical issues in geo-centrifuge test enhances the applicability and accuracy of the test. Geo-centrifuge test is appropriate to simulate the behaviors of underground structures like tunnel, since tunnel interacts with the soil and/or rock around it and the test can embody the in-situ stress conditions effectively. In this study, the seismic behaviors of twin tunnel were analyzed based on geo-centrifuge test. Flexible segment to mitigate seismic acceleration were implemented in the model with thin and thick thickness. Based on the test results, it was found that flexible segment can decrease the peak acceleration generally, however, thin flexible segment was not able to reduce peak acceleration in short-period seismic wave. Thick flexible segment was more effective in case of high bedrock acceleration condition. Additionally, 3-dimensional numerical analysis was performed to verify the characteristics of seismic behavior and the effect of flexible segment. Consequently, the numerical analysis result showed good agreement with the test result.