• 제목/요약/키워드: seismic behaviors

검색결과 272건 처리시간 0.025초

Seismic rehabilitation of substandard RC columns with partially deteriorated concrete using CFRP composites

  • Hou, Dongxu;Wu, Zhimin;Zheng, Jianjun;Cui, Yao
    • Computers and Concrete
    • /
    • 제15권1호
    • /
    • pp.1-20
    • /
    • 2015
  • Many existing reinforced concrete (RC) columns in structures tend to become substandard RC ones due to updated standards or environmental changes. These substandard columns may alter the behaviors of the whole structure and therefore are in urgent need of seismic retrofitting. Owing to their superior advantages, carbon fiber reinforced polymer (CFRP) composites are widely used to retrofit RC columns. The applications mainly focus on various substandard RC columns, but few deals with substandard columns with deteriorated concrete, especially damaged by earthquake. The purpose of this paper is to investigate the seismic behaviors of CFRP reinforced partially deteriorated RC columns and to evaluate the effect of CFRP sheets on them. Six flexure-dominant columns were tested under a constant axial load and transverse cyclic displacements. It is found that the seismic behaviors of partially deteriorated columns can be recovered by wrapping CFRP sheets on them. Numerical analysis is then conducted using finite element methods and verified with experimental results. The effects of the axial load ratio, the ratio of the thickness of CFRP sheet to the column diameter, and the slenderness ratio on the seismic behaviors of CFRP reinforced RC columns are evaluated. Finally, a method is proposed to determine the required thickness of CFRP sheet.

Seismic Analysis on Recycled Aggregate Concrete Frame Considering Strain Rate Effect

  • Wang, Changqing;Xiao, Jianzhuang;Sun, Zhenping
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.307-323
    • /
    • 2016
  • The nonlinear behaviors of recycled aggregate concrete (RAC) frame structure are investigated by numerical simulation method with 3-D finite fiber elements. The dynamic characteristics and the seismic performance of the RAC frame structure are analyzed and validated with the shaking table test results. Specifically, the natural frequency and the typical responses (e.g., storey deformation, capacity curve, etc.) from Model 1 (exclusion of strain rate effect) and Model 2 (inclusion of strain rate effect) are analyzed and compared. It is revealed that Model 2 is more likely to provide a better match between the numerical simulation and the shaking table test as key attributes of seismic behaviors of the frame structure are captured by this model. For the purpose to examine how seismic behaviors of the RAC frame structure vary under different strain rates in a real seismic situation, a numerical simulation is performed by varying the strain rate. The storey displacement response and the base shear for the RAC frame structure under different strain rates are investigated and analyzed. It is implied that the structural behavior of the RAC frame structure is significantly influenced by the strain rate effect. On one hand, the storey displacements vary slightly in the trend of decreasing with the increasing strain rate. On the other hand, the base shear of the RAC frame structure under dynamic loading conditions increases with gradually increasing amplitude of the strain rate.

Performance evaluation of composite moment-frame structures with seismic damage mitigation systems using wavelet analyses

  • Kaloop, Mosbeh R.;Son, Hong Min;Sim, Hyoung-Bo;Kim, Dongwook;Hu, Jong Wan
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.201-214
    • /
    • 2020
  • This study aims at evaluating composite moment frame structures (CFS) using wavelet analysis of the displacement behavior of these structures. Five seismic damage mitigation systems' models of 9-story CFS are examined namely, basic (Model 1), reinforced (Model 2), buckling restrained braced (BRB) (Model 3), lead rubber bearing (LRB) (Model 4), and composite (Model 5) moment frames. A novel integration between continuous and discrete wavelet transforms is designed to estimate the wavelet power energy and variance of measurements' behaviors. The behaviors of the designed models are evaluated under influence of four seismic loads to study the dynamic performance of CFS in the frequency domain. The results show the behaviors of models 3 and 5 are lower than other models in terms of displacement and frequency performances. Model 3 has been shown lower performances in terms of energy and variance wavelets along the monitoring time; therefore, Model 3 demonstrates superior performance and low probability of failure under seismic loads. Furthermore, the wavelet variance analysis is shown a powerful tool that can be used to assess the CFS under seismic hazards.

교량거동에 미치는 기초의 회전 및 병진운동의 영향 (Effects of Foundation Motions on Dynamic Behaviors of a Bridge under Seismic Excitations)

  • 김상효;마호성;함형진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.216-222
    • /
    • 1998
  • Effects of translational and rotational motions of the foundation on the dynamic behaviors of a bridge under seismic excitations are examined by utilizing a simplified 3 degree-of-freedom of system. To consider the nonlinear characteristics of the RC pier, a hysteresis model is adapted, which can simulate the inelastic motion of the pier with the stiffness degradation. From results, the portion of the total displacement due to rotational motion of the foundation becomes larger as applied seismic excitation increases.

  • PDF

지진하중을 받는 대형 콘크리트 판구조의 동적거동-3층 입체구조의 진동실험결과를 중심으로 (Dymamic Behavior of Large Concrete Panel Structures Subjected Seismic Loads)

  • 서수연;박병순;백용준;이원호;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.148-153
    • /
    • 1993
  • The paper presents the results of shaking table test conducted on the 1/3.3 scaled large concrete panel model. The behaviors of large concrete panel structures subjected to seismic excitations are controlled by capacity of horizontal and vertical joints. To Study the seismic capacity of the large concrete panel structures, experimental researches for joints and structural assemblage are needed. Especially, since the magnitude of seismic loads are depended on the variation of time, period and accelerations, dynamic test is needed for estimating the seismic resistance of large concrete panel structures. The objective of this paper is to study the behaviors of large concrete panel structures on seismic excitations and to estimate the safety. Test results are as follows : 1) Test model was critically damaged in the first floor horizontal joint by rocking. 2) Elastic limit(0.12kg) of test model was 5times higher than that of korean seismic design code. 3) Maxium base shear of test model at the ground acceleration of 0.12g was 3.5 times higher than the result of equivalent static analysis. 4) Damping ratio of test model turned out 3.9~5.3% and the period at 0.12g was 0.065sec.

  • PDF

이차원 지진성분을 고려한 교량시스템의 지진거동분석 (Dynamic Behavior Analyses of Bridges under Seismic Excitations in 2-Dimensional Directions)

  • 김상효
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.333-340
    • /
    • 2000
  • Dynamic response behaviors of a bridge are examined under seismic excitations in the 2-dimensional directions are examined. A three-dimensional mechanical model is utilized and the corresponding equations of motions are derived to consider the two directional bridge motions due to the randomness residing in the excitation directions. The arbitrary 2-dimensional directions are simulated by applying two independent excitations in the two directions: main direction(longitudinal) ; the additive direction normal to the main (transverse). The rotational superstructure motions due to the spacial motions of the bridge are considered by admitting the deformation of the bearings at supports. The relative displacement to the ground motions and the relative distance between adjacent oscillators are found to be increased by a considerable amount in the case when considering arbitrary directional seismic excitations. It is also found that the piermotions show more complicated behaviors due to the arbitrary seismic directions.

  • PDF

위험도 기반 내진 설계의 일반적인 프레임워크 (General Framework for Risk-based Seismic Design)

  • 장승필;오윤숙;김남희
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.285-291
    • /
    • 2002
  • This paper proposes the concept and the general framework of the risk-based seismic design. Because earthquakes and the behaviors of structures are very unpredictable, probabilistic seismic design methods have been proposed after deterministic design methods. Considering these changes, we can find that the important point of seismic design is not the structural behavior itself, but the consequence of structural behavior under possible earthquakes. Risk-based seismic design can tell these consequences under any earthquakes. In this paper, structural confidences are considered by using fragility curve, and risk is modeled by failure probability and consequence-property damage cost, casualty cost.

  • PDF

A numerical investigation of seismic performance of large span single-layer latticed domes with semi-rigid joints

  • Zhang, Huidong;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • 제48권1호
    • /
    • pp.57-75
    • /
    • 2013
  • It is still inadequate for investigating the highly nonlinear and complex mechanical behaviors of single-layer latticed domes by only performing a force-based demand-capacity analysis. The energy-based balance method has been largely accepted for assessing the seismic performance of a structure in recent years. The various factors, such as span-to-rise ratio, joint rigidity and damping model, have a remarkable effect on the load-carrying capacity of a single-layer latticed dome. Therefore, it is necessary to determine the maximum load-carrying capacity of a dome under extreme loading conditions. In this paper, a mechanical model for members of the semi-rigidly jointed single-layer latticed domes, which combines fiber section model with semi-rigid connections, is proposed. The static load-carrying capacity and seismic performance on the single-layer latticed domes are evaluated by means of the mechanical model. In these analyses, different geometric parameters, joint rigidities and roof loads are discussed. The buckling behaviors of members and damage distribution of the structure are presented in detail. The sensitivity of dynamic demand parameters of the structures subjected to strong earthquakes to the damping is analyzed. The results are helpful to have a better understanding of the seismic performance of the single-layer latticed domes.

개구부가 있는 비내력벽을 고려한 저층 RC골조구조물의 지진거동 평가 (Evaluation of Seismic Behavior for Masonry Infilled RC Moment Resisting Frame with Openings)

  • 고현;박용구;이동근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.483-489
    • /
    • 2008
  • Masonry infill walls are frequently used as interior partitions and exterior walls in low- or middlerise RC buildings In the structural design and assessment of structural behaviors of buildings, the infill walls are usually treated as non-structural elements and they are ignored in analytical models. In this study, seismic behaviors of RC frame with/without masonry infill walls were investigated. To this end, the infill walls were modeled as equivalent diagonal struts. Based on analytical results, it has been shown that masonry infill walls can increase the global strength and stiffness of a structure. Accordingly, inter-story drift ratio will be decreased but seismic forces applied to the structure were increased than design seismic load because natural period of the structure was decreased. It is also seen from the analytical results that the inelastic deformation of RC frame with soft story is concentrated on the first story columns and thus, partial damage may have possibility of collapse of system.

  • PDF

Flexible Segment가 설치된 병렬터널의 지진시 동적거동 (Seismic behaviors of twin tunnel with flexible segment)

  • 곽창원;박인준
    • 한국터널지하공간학회 논문집
    • /
    • 제17권6호
    • /
    • pp.695-702
    • /
    • 2015
  • 원심모형시험은 최근의 기계적, 이론적 발전에 따라 그 활용도와 정확성이 높아지고 있다. 원심모형시험은 원지반 응력을 효과적으로 재현할 수 있으므로 주위 지반 또는 암반과 상호작용을 하는 터널과 같은 지하구조물의 거동을 모사하기 적합하다. 본 연구에서는 병렬 터널의 지진시 동적 거동을 원심모형시험을 통하여 분석하였다. 터널 모델링시 지진에 의해 발생하는 최대 가속도 저감을 위하여 Flexible segment를 고려하였으며 Flexible segment의 두께가 얇은 경우와 두꺼운 경우를 각각 고려하였다. 시험 결과 Flexible segment의 지진시 터널 구조물에 발생하는 최대 가속도 저감 효과를 확인하였다. 그러나 Flexible segment가 얇은 경우 단주기파 적용시 최대가속도의 저감효과는 없었고, 두꺼운 경우 기반암 가속도가 클 경우 보다 효과적임을 확인하였다. 또한 동일 모델에 대하여 3차원 수치해석을 수행하여 지진시 거동을 파악한 결과, 시험 결과와 유사한 경향을 보임을 확인할 수 있었다.