• Title/Summary/Keyword: seismic base

Search Result 774, Processing Time 0.025 seconds

Seismic Behavior of H shaped Beam to Square Column Connection with Outer Diaphragm Using Field Welding (외측 다이아프램을 사용한 현장 용접형 각형강관기둥-H형강보 접합부의 이력거동)

  • Seo, Seong Yeon;Jung, Jin Ahn;Choi, Sung Mo;Kim, Sung Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.459-467
    • /
    • 2005
  • This study focuses on the development of a new method of H-shaped beam-to-square column connection with an outer diaphragm and a field welding. The specific type of beam-to-column connection with an external stiffener, using field welding, is proposed. The structural behavior of this connection was examined experimentally. Two loading type tests were conducted under the experimental parameters given as details. First described was the symmetrical loading test, which supported both ends or a beam simply and applied a load from the column to the pend (What does this mean?) to investigate a fundamental characteristic of this connection. Further described was the anti-symmetrical loading test, which carried out simple support of the column'stop end and the column base, and applied a load from both ends of a beam to investigate the structural performance of this connection. From the results, it is clear that the external- stiffener-type connection proposed in this paper is the reliable connection method.

The multi-axial testing system for earthquake engineering researches

  • Lin, Te-Hung;Chen, Pei-Ching;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.165-176
    • /
    • 2017
  • Multi-Axial Testing System (MATS) is a 6-DOF loading system located at National Center for Research on Earthquake Engineering (NCREE) in Taiwan for advanced seismic testing of structural components or sub-assemblages. MATS was designed and constructed for a large variety of structural testing, especially for the specimens that require to be subjected to vertical and longitudinal loading simultaneously, such as reinforced concrete columns and lead rubber bearings. Functionally, MATS consists of a high strength self-reacting frame, a rigid platen, and a large number of servo-hydraulic actuators. The high strength self-reacting frame is composed of two post-tensioned A-shape reinforced concrete frames interconnected by a steel-and-concrete composite cross beam and a reinforced concrete reacting base. The specimen can be anchored between the top cross beam and the bottom rigid platen within a 5-meter high and 3.25-meter wide clear space. In addition to the longitudinal horizontal actuators that can be installed for various configurations, a total number of 13 servo-hydraulic actuators are connected to the rigid platen. Degree-of-freedom control of the rigid platen can be achieved by driving these actuators commanded by a digital controller. The specification and information of MATS in detail are described in this paper, providing the users with a technical point of view on the design, application, and limitation of MATS. Finally, future potential application employing advanced experimental technology is also presented in this paper.

Dynamic Analysis of a KAERI Channel Type Shear Wall: System Identification, FE Model Updating and Time-History Responses (KAERI 채널형 전단벽체의 동적해석; 시스템판별, FE 모델향상 및 시간이력 응답)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.145-152
    • /
    • 2021
  • KAERI has planned to carry out a series of dynamic tests using a shaking table and time-history analyses for a channel-type concrete shear wall to investigate its seismic performance because of the recently frequent occurrence of earthquakes in the south-eastern parts of Korea. The overall size of a test specimen is b×l×h =2500 mm×3500 mm×4500 mm, and it consists of three stories having slabs and walls with thicknesses of 140 mm and 150 mm, respectively. The system identification, FE model updating, and time-history analysis results for a test shear wall are presented herein. By applying the advanced system identification, so-called pLSCF, the improved modal parameters are extracted in the lower modes. Using three FE in-house packages, such as FEMtools, Ruaumoko, and VecTor4, the eigenanalyses are made for an initial FE model, resulting in consistency in eigenvalues. However, they exhibit relatively stiffer behavior, as much as 30 to 50% compared with those extracted from the test in the 1st and 2nd modes. The FE model updating is carried out to consider the 6-dofs spring stiffnesses at the wall base as major parameters by adopting a Bayesian type automatic updating algorithm to minimize the residuals in modal parameters. The updating results indicate that the highest sensitivity is apparent in the vertical translational springs at few locations ranging from 300 to 500% in variation. However, their changes seem to have no physical meaning because of the numerical values. Finally, using the updated FE model, the time-history responses are predicted by Ruaumoko at each floor where accelerometers are located. The accelerograms between test and analysis show an acceptable match in terms of maximum and minimum values. However, the magnitudes and patterns of floor response spectra seem somewhat different because of the slightly different input accelerograms and damping ratios involved.

Analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Dongping
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.355-366
    • /
    • 2019
  • Self-centering wall (SCW) is a resilient and sustainable structural system which incorporates unbonded posttensioning (PT) tendons to provide self-centering (SC) capacity along with supplementary dissipators to dissipate seismic energy. Hysteretic energy dissipators are usually placed at two sides of SCWs to facilitate ease of postearthquake examination and convenient replacement. To achieve a good prediction for the skeleton curve of the wall, this paper firstly developed an analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers (VD-SCWs) using the concept of elastic theory. A simplified method for the calculation of limit state points is developed and validated by experimental results and can be used in the design of the system. Based on the analytical results, parametric analysis is conducted to investigate the influence of damper and tendon parameters on the performance of VD-SCWs. The results show that the proposed approach has a better prediction accuracy with less computational effects than the Perez method. As compared with previous experimental results, the proposed method achieves up to 60.1% additional accuracy at the effective linear limit (DLL) of SCWs. The base shear at point DLL is increased by 62.5% when the damper force is increased from 0kN to 80kN. The wall stiffness after point ELL is reduced by 69.5% when the tendon stiffness is reduced by 75.0%. The roof deformation at point LLP is reduced by 74.1% when the initial tendon stress is increased from $0.45f_{pu}$ to $0.65f_{pu}$.

Shake-table tests on moment-resisting frames by introducing engineered cementitious composite in plastic hinge length

  • Khan, Fasih A.;Khan, Sajjad W.;Shahzada, Khan;Ahmad, Naveed;Rizwan, Muhammad;Fahim, Muhammad;Rashid, Muhammad
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.23-34
    • /
    • 2022
  • This paper presents experimental studies on reinforced concrete moment resisting frames that have engineered cementitious composite (ECC) in plastic hinge length (PHL) of beam/column members and beam-column joints. A two-story frame structure reduced by a 1:3 scale was further tested through a shake-table (seismic simulator) using multiple levels of simulated earthquake motions. One model conformed to all the ACI-318 requirements for IMRF, whereas the second model used lower-strength concrete in the beam/column members outside PHL. The acceleration time history of the 1994 Northridge earthquake was selected and scaled to multiple levels for shake-table testing. This study reports the observed damage mechanism, lateral strength-displacement capacity curve, and the computed response parameters for each model. The tests verified that nonlinearity remained confined to beam/column ends, i.e., member joint interface. Calculated response modification factors were 11.6 and 9.6 for the code-conforming and concrete strength deficient models. Results show that the RC-ECC frame's performance in design-based and maximum considered earthquakes; without exceeding maximum permissible drift under design-base earthquake motions and not triggering any unstable mode of damage/failure under maximum considered earthquakes. This research also indicates that the introduction of ECC in PHL of the beam/column members' detailing may be relaxed for the IMRF structures.

Peak floor acceleration prediction using spectral shape: Comparison between acceleration and velocity

  • Torres, Jose I.;Bojorquez, Eden;Chavez, Robespierre;Bojorquez, Juan;Reyes-Salazar, Alfredo;Baca, Victor;Valenzuela, Federico;Carvajal, Joel;Payaan, Omar;Leal, Martin
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.551-562
    • /
    • 2021
  • In this study, the generalized intensity measure (IM) named INpg is analyzed. The recently proposed proxy of the spectral shape named Npg is the base of this intensity measure, which is similar to the traditional Np based on the spectral shape in terms of pseudo-acceleration; however, in this case the new generalized intensity measure can be defined through other types of spectral shapes such as those obtained with velocity, displacement, input energy, inelastic parameters and so on. It is shown that this IM is able to increase the efficiency in the prediction of nonlinear behavior of structures subjected to earthquake ground motions. For this work, the efficiency of two particular cases (based on acceleration and velocity) of the generalized INpg to predict the peak floor acceleration demands on steel frames under 30 earthquake ground motions with respect to the traditional spectral acceleration at first mode of vibration Sa(T1) is compared. Additionally, a 3D reinforced concrete building and an irregular steel frame is used as a basis for comparison. It is concluded that the use of velocity and acceleration spectral shape increase the efficiency to predict peak floor accelerations in comparison with the traditional and most used around the world spectral acceleration at first mode of vibration.

Implementation of Bender Element to In-situ Measurement of Stiffness of Soft Clays (연약지반의 강성 측정을 위한 벤더 엘리먼트의 현장 적용성 연구)

  • Mok, Young-Jin;Jung, Jae-Woo;Han, Man-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.37-45
    • /
    • 2006
  • Bender elements, composed of thin piezo-ceramics and elastic shims, have been used to measure shear wave velocities of specimens in laboratories. In a preliminary stage of their field applications, an in-house research of optimizing suitable bender elements and their geometrical arrangement has been carried out in a barrel of kaolinite-water mixture. Two types of measurement configuration, similar to cross-hole and in-hole seismic testing, have been implemented. prototype instrumented rods were penetrated into a soft clay layer in the west coast and excellent shear waves were recorded. Development of penetration device (mandrel) and associated instrumented rods are in progress for deeper investigation.

A Fundamental Study for a Dispersion Characteristics of Surface Waves on an Influence of Adjacent Structures (인접구조물의 영향에 의한 표면파 분산특성의 기초연구)

  • Cho, Mi-Ra;Cho, Sung-Ho;Kim, Bong-Chan;Kim, Suhk-Chol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.239-245
    • /
    • 2008
  • In this study, a fundamental-level study was performed to establish knowledge-base for the development of optimal surface-wave method for urban areas with adjacent structures. First, theoretical modelling was performed to investigate the influence of adjacent structures on dispersion characteristics of surface waves. Later, the geotechnical sites with a concrete model of adjacent structure and a real subway box structure were tested by surface-wave method to investigate the influence of adjacent structures. The major influencing factors of adjacent structures on surface-wave propagation were direct distance between measurement array and adjacent structure, stiffness contrast between layers and type of seismic source.

A Seismic Study on Muddy Sediment Deposits in the Northern Shelf of the East China Sea (동중국해 북부대륙붕에 발달한 니질 퇴적체의 탄성파 연구)

  • Choi Dong-Lim;Lee Tae-Hee;Yoo Hae-Soo;Lim Dhong-Il;Huh Sik;Kim Kwang-Hee
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.633-642
    • /
    • 2005
  • We present the sedimentary sequence and distribution pattern of the late Holocene muddy deposits in the northern East China Sea shelf using the high-resolution 'Chirp' profiles. The seismic sedimentary sequence overlying acoustic basement (basal reflector-B) can be divided into two depositional units (Unit 1 and 2) bounded by erosional bounding surface (mid reflector-M). The lower Unit 1 above basal reflector-H is characterized by the acoustically parallel to subparallel reflections and channel-fill facies. The upper Unit 2, up to 7 m in thickness, shows seismically semi-transparent seismic facies and lenticular body form. On the base of sequence stratigraphic concept, these two sediment units have developed during transgression and highstand period, respectively, since the last sea-level lowstand. The transgressive systems tract (Unit 1) lie directly on the sequence boundary (reflector B) that have farmed during the last glacial maximum. The transgressive systems tract in this study consists mostly of complex of delta, fluvial, and tidal deposits within the incised valley estuary system. The maximum flooding surface (reflector M) corresponding to the top surface of transgressive systems tract is obviously characterized by erosional depression. The highstand systems tract (Unit 2) above maximum flooding surface is made up of the mud patch filled with the erosional depression. The high-stand mud deposits showing a circle shape just like a typhoon symbol locates about 140 km off the south of Cheju Island with water depth of $60\~90m$. Coverage area and total sediment volume of the mud deposits are about $3,200km^2$ and $10.7\times10^9\;m^3$, respectively. The origin of the mud patch is interpreted as a result of accumulating suspended sediments derived from the paleo-Yellow and/or Yangtze Rivers. The circular distribution pattern of the mud patch appears to be largely controlled by the presence of cyclonic eddy in the northern East China Sea.

Application of geophysical exploration methods for safety diagnosis of the basement of stone pagoda (지구물리탐사 방법의 석탑지반 안전진단에의 적용)

  • Suh, Man-Cheol;Oh, Jin-Yong;Kim, Ki-Hyun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.70-83
    • /
    • 2004
  • The safety diagnosis of cultural assets is Primarily focused on its non-destructiveness. Research on the nondestructive diagnosis and conservation of masonry cultural heritage is the key which is considered by technologic kernel. Geophyscial Prospecting as nondestructive diagnostic technology plays an important role in the characterization of the foundation of stone pagodas. It is natural that understanding of shallow subsurface condition beneath them is essential for their structural safety diagnosis. As an example, the nondestructive geophysical methods were applied to two three-story stone pagodas, Seokgatap (height 10.8 m, width 4.4 m, weight 82.3 ton) and Dabotap (height 10.4 m, width 7.4 m, weight 123.2 ton) which were built in 791 at Bulkuksa temple. An earlier archaeological investigation shows that stone pagodas have experienced severe weathering process and are slightly leaning, which will threaten their stability At the base part of Dabotap, an offset of the stone alignment is also observed. Direct measurements of ultrasonic velocities was introduced for the mechanical properties of the stone The velocity ranges of ultrasonic waves for Dabotap and Seokgatap are 1217${\~}$4403 m/s and 584${\~}$5845 m/s, respectively, and the estimated averages of the uniaxial compressive strength are 463 kg/$cm^2$ and 409 kg/$cm^2$, respectively. Site characteristics, around the pagodas are determined by the measurement of multiple properties such as seismic velocity, resistivity, image of ground-penetrating radar, On the basis of the higher velocity structure, the site of Seokgatap appears to have solider stability than the Seokgatap site. Near the pagodas, higher(up to 2200 $\Omega$m) resistivity is present whereas their outskirts have as low as 200 $\Omega$m. By the combined results of each geophyscial methods, the subsurface boundaries of two stone pagodas are revealed. The Dabotap site is in the form of an octagon having 6-m-long side with the depth of ${\~}$4 m, whereas the Seokgatap site is the 8 ${\times}$ 10 m rectangle with the depth of 3 m. These subsurface structures appear to reflect the original foundations constructed against the stone load of ${\~}8 ton/m^2$. At the subsurface beneath the northeast of each pagoda, low seismic velocity as well as low resistivity is prominent. It is interpreted to represent the weak underground condition which Is the possible cause of the slightly leaning pagodas toward the NNW.

  • PDF