• Title/Summary/Keyword: seismic areas

Search Result 276, Processing Time 0.024 seconds

Assessment of a dual isolation system with base and vertical isolation of the upper portion

  • Sasan Babaei;Panam Zarfam;Abdolreza Sarvghad Moghadam;Seyed Mehdi Zahrai
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.263-271
    • /
    • 2023
  • Base isolation is a widely used technique for the seismic control of structures as it reduces the structural seismic demand. However, displacement of the isolation layer is not economically feasible in congested urban areas. To resolve the issue, an innovative system is proposed here to isolate both horizontally at the base and vertically in the upper portion of the structure. A simplified linear three degree-of-freedom (3DOF) model of the system that considers the mass and stiffness ratios of the substructure has been introduced and analyzed in MATLAB by spectrum analysis. The 3DOF model results revealed that, when the period of the soft substructure reaches 2.5 times that of the stiff substructure, the isolation and the lower substructure responses decrease by 65% and 51%, respectively. Time-history analysis of a MDOF system at three frequency ratios under a wide range of ground motions indicated that, at the expense of accepting a certain large drift by the soft substructure in the upper portion of the structure, base isolation displacement can be decreased by 10%.

Analysis of Scale and Shape of Limestone Cavities using Borehole Drilling and Geophysical Investigations (시추 및 물리탐사를 이용한 석회암 공동의 분포 규모 분석)

  • Song, Gyu-Jin;Yun, Hyun-Seok;Jang, Il-Ho;Choi, Yong-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.251-263
    • /
    • 2015
  • Geological mapping, borehole drilling, electrical resistivity, and seismic tomography surveys were conducted in order to map underground cavities and better understand the mechanisms driving subsidence in a limestone region in Korea. Limestone outcrops in the study area generally alternate between calcite-rich and calcite-poor rock. The results reveal that in areas experiencing subsidence, cavities occur mainly around soil-rock boundaries at depths of 7~14 m. These results are based on comparative analyses of electrical resistivity, seismic tomography, and borehole logging data. The volumes of the cavities are relatively small in a range of 558~835 ㎥ and they have a shape typical of suffosion sinkholes, which are typically found where sandy soils overlie bedrock cavities.

Reverse-time Migration using Surface-related Multiples (자유면 기인 겹반사파를 이용한 거꿀시간 참반사 보정)

  • Lee, Ganghoon;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.41-53
    • /
    • 2018
  • In the traditional seismic processing, multiple reflections are treated as noise and therefore they are eliminated during data processing. Recently, however, many studies have begun to consider multiples as signals rather than noise for seismic imaging. Multiple reflections can illuminate an area where primary reflections are not able to cover, thus it is allowed that a smaller number of shots and receivers are used for imaging large areas. In order to verify this, surface-related multiples were used for reverse-time migration (RTM), and then we compared the results with conventional RTM images which are generated from primary reflections. To utilize multiples, we separated multiples from whole seismic data using surface-related multiple elimination (SRME) method. Numerical examples confirmed that the migration using multiples can image wider area than the conventional migration, particularly in the shallow subsurface layers. In addition, the migration of multiples could eliminate the acquisition footprints.

Evaluation of Liquefaction Triggering for the Pohang Area Based on SPT and CPT Tests (SPT와 CPT 지반조사결과에 기초한 포항지역 액상화 위험도 평가)

  • Kim, Yeon-Jun;Ko, Kil-Wan;Kim, Byung-Min;Park, Du-Hee;Kim, Ki-Seog;Han, Jin-Tae;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.57-71
    • /
    • 2020
  • Liquefaction-induced sand boils were observed during the Pohang earthquake (Moment magnitude, 5.4) on November 15, 2017, specifically in the region of agricultural fields and park areas near the epicenter. This was recorded as the first observed liquefaction phenomenon in Korea. This paper analyzes liquefaction potentials at the key sites at Pohang area. The simplified methods and current design standard were used to evaluate the occurrence of liquefaction. The seismic demand was estimated based on the NGA-WEST2 ground motion prediction equations (GMPEs). The liquefaction resistance of the ground was determined using the in-situ tests: standard penetration test (SPT) and cone penetration test (CPT). The liquefaction potentials were quantified by liquefaction potential index (LPI), which were compared with those from the previous studies.

Seismic behavior investigation of the steel multi-story moment frames with steel plate shear walls

  • Mansouri, Iman;Arabzadeh, Ali;Farzampour, Alireza;Hu, Jong Wan
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.91-98
    • /
    • 2020
  • Steel plate shear walls are recently used as efficient seismic lateral resisting systems. These lateral resistant structures are implemented to provide more strength, stiffness and ductility in limited space areas. In this study, the seismic behavior of the multi-story steel frames with steel plate shear walls are investigated for buildings with 4, 8, 12 and 16 stories using verified computational modeling platforms. Different number of steel moment bays with distinctive lengths are investigated to effectively determine the deflection amplification factor for low-rise and high-rise structures. Results showed that the dissipated energy in moment frames with steel plates are significantly related to the inside panel. It is shown that more than 50% of the dissipated energy under various ground motions is dissipated by the panel itself, and increasing the steel plate length leads to higher energy dissipation capability. The deflection amplification factor is studied in details for various verified parametric cases, and it is concluded that for a typical multi-story moment frame with steel plate shear walls, the amplification factor is 4.93 which is less than the recommended conservative values in the design codes. It is shown that the deflection amplification factor decreases if the height of the building increases, for which the frames with more than six stories would have less recommended deflection amplification factor. In addition, increasing the number of bays or decreasing the steel plate shear wall length leads to a reduction of the deflection amplification factor.

Large Ground Motion Related to Crustal Structure in Korea (한반도 지각 구조로 인한 이상 강진동 관측 및 해석)

  • Kim, Kwang-Hee;Kang, Su-Young;Min, Dong-Joo;Suk, Bong-Chool;Ryoo, Yong-Gyu
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.559-566
    • /
    • 2008
  • Ground shaking recorded during the January 20, 2007, $M_L$ 4.8 Odaesan earthquake (Korea) were used to investigate the role of the crustal structure in producing a strong ground motion, which includes the identification of the phases responsible for the strong ground motion and their implications for seismic hazard assessment. Analyses of strong-motion data together with waveform simulation revealed that critical and post-critical reflections from the crust-mantle boundary are responsible for the abnormal ground motions. This result demonstrates that the crustal structure should be taken into consideration in studies of seismic hazard mitigation even in the areas of relatively low seismicity.

Proposed Survey Steps for Investigation of Land-Creeping Susceptibility Areas: A Focus on Geophysical Mapping of the Yongheung-dong, Pohang, Korea

  • Kim, Jeong-In;Lee, Sun-Joong;Kim, Kwan-Soo;Lee, Jae-Eun;Sa, Jin-Hyun;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.269-281
    • /
    • 2021
  • Land creeping is the imperceptibly slow, steady, downward movement o f slope-forming soil or rock. Because creep-related failures occur frequently on a large scale without notice, they can be hazardous to both property and human life. Korea Forest Service has operated the prevention and response system from land creeping which has been on the rise since 2018. We categorized and proposed three survey steps (e.g., preliminary, regional, detailed) for investigation of creeping susceptibility site with a focus on geophysical mapping of a selected test site, Yongheung-dong, Pohang, Korea. The combination of geophysical (dipole-dipole electrical resistivity tomography and reciprocal seismic refraction technique, well-logging), geotechnical studies (standard penetrating test, laboratory tests), field mapping (tension cracks, uplift, fault), and comprehensive interpretation of their results provided the reliable information of the subsurface structures including the failure surface. To further investigate the subsurface structure including the sliding zone, we performed high-resolution geophysical mapping in addition to the regional survey. High-resolution seismic velocity structures are employed for stability analysis because they provided more simplified layers of weathering rock, soft rock, and hard rock. Curved slip plane of the land creeping is effectively delineated with a shape of downslope sliding and upward pushing at the apex of high resistive bedrock in high-resolution electrical resistivity model with clay-mineral contents taken into account. Proposed survey steps and comprehensive interpretation schemes of the results from geological, geophysical, and geotechnical data should be effective for data sets collected in a similar environment to land-creeping susceptibility area.

Evaluation of the Site Specific Ground Response in Korean Urban Site (국내 도시지역의 지반응답특성 거동 평가)

  • Shin, Dea-Sub;Kim, Hu-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.250-255
    • /
    • 2017
  • When an earthquake occurs, it is necessary to evaluate the site-specific ground response while considering ground characteristics in seismic design. The design seismic force of Korean seismic design criteria is borrowed from the Uniform Building Code(UBC-1997). However, the criteria are based on the ground characteristics of the United States, which are different from the ground characteristics in Korea, and using them could cause over-or under-designing. Therefore, it is important to develop a proper design response spectrum for Korean ground characteristics. In this study, 158 ground sites in Korean urban areas were selected and compared to those in the western part of the United States, and their site-specific ground responses were analyzed. The classification standard in the seismic design criteria classifies the 158 sites into 37 sites, 107 sites, and 14 sites. Using 7 earthquake inputs, the criteria were compared for each group.The Korean design response spectrum underestimates the amplification of the short-period range and overestimates the amplification in the long-period range. There were large differences in the results of the and sites,which account for 77 percent of the 158 sites. Therefore, there is a need to modify the amplification factor in the Korean seismic criteria to properly reflect Korean ground characteristics.

Preliminary Estimation of Earthquake Losses Based on HAZUS in a Coastal Facility Area with Blocks Applying Site Classification (블록별 부지분류 적용 해안시설 영역에서의 HAZUS 기반 지진피해 추정)

  • Sun, Chang-Guk;Chun, Sung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.10-27
    • /
    • 2014
  • HAZUS-MH is a GIS-based computer program that estimates potential losses from multi-hazard phenomena: earthquakes, floods and hurricanes. With respect to seismic disaster, characteristics of a hypothetical or actual earthquake are entered into HAZUS. Then HAZUS estimates the intensity of ground shaking and calculates the correspondent losses. In this study, HAZUS was used as a part of the preparations of the future seismic events at a coastal plant facility area. To reliably characterize the target facility area, many geotechnical characteristics data were synthesized from the existing site investigation reports. And the buildings and facilities were sorted by analyzing their material and structural characteristics. In particular, the study area was divided into 17 blocks taking into account the situation of both land development and facility distribution. The ground conditions of blocks were categorized according to the site classification scheme for earthquake-resistant design. Moreover, seismic fragility curves of a main facilities were derived based on the numerical modeling and were incorporated into the database in HAZUS. The results estimated in the study area using HAZUS showed various seismic damage and loss potentials depending on site conditions and structural categories. This case study verified the usefulness of the HAZUS for estimating earthquake losses in coastal facility areas.

Analysis on the Reliability and Influence Factors of Refraction Traveltime Tomography Depending on Source-receiver Configuration (송수신기 배열에 따른 굴절 주시 역산의 영향 인자 및 신뢰성 분석)

  • Lee, Donguk;Park, Yunhui;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.163-175
    • /
    • 2017
  • In land seismic exploration, irregular surface topography and weathering layer in near surface distorts the reflected signals of data. Therefore, typical land seismic data should be compensated for this distortion by static correction. To perform the static correction, near-surface velocity is required, which can be obtained by seismic refraction survey. However, land seismic data is often acquired in a limited form of geometry depending on the equipment availability, accessibility condition, and permission for the survey site. In this situation, refraction analysis should be performed using reflection data because it is impossible to acquire refraction-oriented data due to limited source and receiver geometry. In this study, we aimed to analyze the reliability of the results obtained by refraction traveltime tomography when using reflection data with a limited number of sources and receivers from irregular surface topography. By comparing the inversion result from irregular topography with that from flat surface, we found that the surface topography affects the reliability of the inversion results to some degree. We also found that the number of sources has little effect on the inversion results unless the number of sources are very small. On the other hand, we observed that velocity distortion occurred in the overlapped part of receiver arrays when using a limited number of receivers, and therefore suggested the size of the least overlapping ratio to avoid the velocity distortion. Finally, we performed numerical tests for the model which simulates the surface topography and acquisition geometry of the survey region and verified the reliability analysis of inversion results. We identified reliable areas and suspicious area of the inverted velocity model by applying the analysis results to field data.