• Title/Summary/Keyword: seismic analysis methods

Search Result 567, Processing Time 0.024 seconds

Seismic investigation of pushover methods for concrete piers of curved bridges in plan

  • Ahmad, Hamid Reza;Namdari, Nariman;Cao, Maosen;Bayat, Mahmoud
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The use of non-linear analysis of structures in a functional way for evaluating the structural seismic behavior has attracted the attention of the engineering community in recent years. The most commonly used functional method for analysis is a non-linear static method known as the "pushover method". In this study, for the first time, a cyclic pushover analysis with different loading protocols was used for seismic investigation of curved bridges. The finite element model of 8-span curved bridges in plan created by the ZEUS-NL software was used for evaluating different pushover methods. In order to identify the optimal loading protocol for use in astatic non-linear cyclic analysis of curved bridges, four loading protocols (suggested by valid references) were used. Along with cyclic analysis, conventional analysis as well as adaptive pushover analysis, with proven capabilities in seismic evaluation of buildings and bridges, have been studied. The non-linear incremental dynamic analysis (IDA) method has been used to examine and compare the results of pushover analyses. To conduct IDA, the time history of 20 far-field earthquake records was used and the 50% fractile values of the demand given the ground motion intensity were computed. After analysis, the base shear vs displacement at the top of the piers were drawn. Obtained graphs represented the ability of a cyclic pushover analysis to estimate seismic capacity of the concrete piers of curved bridges. Based on results, the cyclic pushover method with ISO loading protocol provided better results for evaluating the seismic investigation of concrete piers of curved bridges in plan.

A study on the Stability of Rail way Construction on the Reclaimed Land for Domestic Marine Clay Using the Seismic Analysic (연약지반상 지진하중을 고려한 철도노반의 안정성 검토에 관한 연구)

  • Kim Young-Soo;Kim Moo-Ill
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1071-1076
    • /
    • 2004
  • The purpose. in this study. is to analyze liquefaction potential of Inchon International Airport at the Area Phase ' I ' for Railway Construction of all, seismic response was analyzed using the computer program, Shake91. Four methods proposed by Seed & Idriss. Eurocode, Iwasaki & Tatsuoka. and Ishihara were used for assessment of liquefaction potential and safety factors calculated form these methods are compared. Based on the results of seismic response analysis, the maximum acceleration at the ground surface is larger than that evaluated site factor effect by using site factor because these areas are composed of very loose sand clay. Especially, in the case of analysis with long period earthquake data. it is appeared that the acceleration of earthquake is amplified more largely. Therefore, accurate seismic response analysis is suggested for the design on the important structures on reclaimed land. The analytical results of liquefaction potential show that the increments of N-value and effective overburden pressure with remediation make safety factors increase. Through comparing the safety factors evaluated from four method, the safety factor calculated by See & Idriss method in the lowest one and it is found that the SPT N-value effect the safety factor very largely. And, Iwasaki & Tatsuoka method is affected by various factors such as average grain size. fine contents, confining pressure. In conclusion. to minimize earthquake Risk by liquefaction, the efficient remediation is essential and seismic response analysis should be carride out.

  • PDF

Improved Distribution of Lateral Seismic Forces for Evaluation of Inelastic Seismic Response of RC Irregular Building Structures (비정형 RC 건축구조물의 비선형 지진응답 평가를 위한 개선된 횡하중 분배 방법)

  • 최원호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.322-329
    • /
    • 2000
  • Current seismic design codes for building structures are based on the methods which can provide enough capacity to satisfy objected performance level and exactly evaluate the seismic performance of buildings. Pushover analysis of fast becoming an accepted method for the seismic evaluation of building structures. The popularity of this approximate, nonlinear static analysis method is due to its conceptual simplicity and ability to graphically describe a capacity and demand of structure. However, some of the shortcomings of the pushover analysis, especially for longer period and irregular buildings, is the inability of method to identify failure mechanisms due to effects of higher modes. In this paper proposed lateral load pattern which includes the contribution of higher modes of vibration for irregular building structure and compared to seismic response obtained by time history.

  • PDF

Engineering Impact Assessment of the Site Coefficients In the Current Highway Bridge Code of Korea (현행 도로교시방서의 지반계수에 대한 공학적 영향평가)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.89-97
    • /
    • 1998
  • This study is intended to investigate the seismic responses of bridge structures considering site effects. The site effects in the seismic analysis of bridge structures were classified into two parts. At first, the seismic responses of the structures on each "soil profile types" of the code were evaluated in accordance with code-specified method and compared with results of time-history analysis method. And next, as a second stage of the study, the responses of the two different soil with considerably different soil properties, even though they are classified to the same "soil profile types" of the code, were evaluated and compared each other. The first part of study is purposed to evaluate the applicability of code-specified method, while the other part is purposed to find the variance of the seismic responses from the different soil sites in the same soil profile types of the code. For the analysis, two major methods of the code, single-mode spectral anaysis and multi-mode spectral analysis, were used and the time-history analysis method which is expected to give more accurate responses was also used for the comparison purposes. For the time-history analysis, time-domain analysis technique of the lumped-mass model with frequency-independent soil springs and dampers was adopted and artificially generated spectra of the code was used as input motion. As the results of the study, the code specified methods for the seismic responses considering the site effects were verified to give the results in conservative side for the most of the cases. However, for the structures on the site with considerable flexibility, the responses of the bridge girders or deckplates by the code methods both in section forces and horizontal movement responses, may have much smaller values than the actual responses. Therefore, more detailed analysis considering the flexibility of the base soil may be required to have more reasonable results in girder responses.in girder responses.

  • PDF

Seismic damage potential described by intensity parameters based on Hilbert-Huang Transform analysis and fundamental frequency of structures

  • Tyrtaiou, Magdalini;Elenas, Anaxagoras
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.507-517
    • /
    • 2020
  • This study aims to present new frequency-related seismic intensity parameters (SIPs) based on the Hilbert-Huang Transform (HHT) analysis. The proposed procedure is utilized for the processing of several seismic accelerograms. Thus, the entire evaluated Hilbert Spectrum (HS) of each considered seismic velocity time-history is investigated first, and then, a delimited area of the same HS around a specific frequency is explored, for the proposition of new SIPs. A first application of the suggested new parameters is to reveal the interrelation between them and the structural damage of a reinforced concrete frame structure. The index of Park and Ang describes the structural damage. The fundamental frequency of the structure is considered as the mentioned specific frequency. Two statistical methods, namely correlation analysis and multiple linear regression analysis, are used to identify the relationship between the considered SIPs and the corresponding structural damage. The results confirm that the new proposed HHT-based parameters are effective descriptors of the seismic damage potential and helpful tools for forecasting the seismic damages on buildings.

Strength Demand Calculation for Retrofitting Unreinforced Masonry Buildings Based on the Displacement Coefficient Method and the Preliminary Seismic Evaluation Procedure (변위계수법 및 약산식 내진성능평가에 기초한 비보강 조적조 건물의 내진보강 요구강도 산정)

  • Seol, Yun Jeong;Park, Ji-Hun;Kwak, Byeong Hun;Kim, Dae Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • Based on the nonlinear static analysis and the approximate seismic evaluation method adopted in "Guidelines for seismic performance evaluation for existing buildings, two methods to calculate strength demand for retrofitting individual structural walls in unreinforced masonry buildings are proposed." The displacement coefficient method to determine displacement demand from nonlinear static analysis results is used for the inverse calculation of overall strength demand required to reduce the displacement demand to a target value meeting the performance objective of the unreinforced masonry building to retrofit. A preliminary seismic evaluation method to screen out vulnerable buildings, of which detailed evaluation is necessary, is utilized to calculate overall strength demand without structural analysis based on the difference between the seismic demand and capacity. A system modification factor is introduced to the preliminary seismic evaluation method to reduce the strength demand considering inelastic deformation. The overall strength demand is distributed to the structural walls to retrofit based on the wall stiffness, including the remaining walls or otherwise. Four detached residential houses are modeled and analyzed using the nonlinear static and preliminary evaluation procedures to examine the proposed method.

A study on nonlinear seismic response analysis of building considering frequency dependent soil impedance in time domain

  • Nakamura, Naohiro
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.91-107
    • /
    • 2009
  • In order to accurately estimate the seismic behavior of buildings, it is important to consider both nonlinear characteristics of the buildings and the frequency dependency of the soil impedance. Therefore, transform methods of the soil impedance in the frequency domain to the impulse response in the time domain are needed because the nonlinear analysis can not be carried out in the frequency domain. The author has proposed practical transform methods. In this paper, seismic response analyses considering frequency dependent soil impedance in the time domain are shown. First, the formulation of the proposed transform methods is described. Then, the linear and nonlinear earthquake response analyses of a building on 2-layered soil were carried out using the transformed impulse responses. Through these analyses, the validity and efficiency of the methods were confirmed.

Machine Learning based Seismic Response Prediction Methods for Steel Frame Structures (기계학습 기반 강 구조물 지진응답 예측기법)

  • Lee, Seunghye;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.91-99
    • /
    • 2024
  • In this paper, machine learning models were applied to predict the seismic response of steel frame structures. Both geometric and material nonlinearities were considered in the structural analysis, and nonlinear inelastic dynamic analysis was performed. The ground acceleration response of the El Centro earthquake was applied to obtain the displacement of the top floor, which was used as the dataset for the machine learning methods. Learning was performed using two methods: Decision Tree and Random Forest, and their efficiency was demonstrated through application to 2-story and 6-story 3-D steel frame structure examples.

Novel Hilbert spectrum-based seismic intensity parameters interrelated with structural damage

  • Tyrtaiou, Magdalini;Elenas, Anaxagoras
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.197-208
    • /
    • 2019
  • The objective of this study is to propose new seismic intensity parameters based on the Hilbert spectrum and to associate them with the seismic damage potential. In recent years the assessment of even more seismic features derived from the seismic acceleration time-histories was associated with the structural damage. For a better insight into the complex seismic acceleration time-history, Hilbert-Huang Transform (HHT) analysis is utilized for its processing, and the Hilbert spectrum is obtained. New proposed seismic intensity parameters based on the Hilbert spectrum are derived. The aim is to achieve a significant estimation of the seismic damage potential on structures from the proposed new intensity parameters confirmed by statistical methods. Park-Ang overall structural damage index is used to describe the postseismic damage status of structures. Thus, a set of recorded seismic accelerograms from all over the word is applied on a reinforced concrete frame structure, and the Park-Ang indices through nonlinear dynamic analysis are provided and considered subsequently as reference numerical values. Conventional seismic parameters, with well-known seismic structural damage interrelation, are evaluated for the same set of excitations. Statistical procedures, namely correlation study and multilinear regression analysis, are applied on the set of the conventional parameters and the set of proposed new parameters separately, to confirm their interrelation with the seismic structural damage. The regression models are used for the evaluation of the structural damage indices for every set of parameters, respectively. The predicted numerical values of the structural damage indices evaluated from the two sets of seismic intensity parameters are inter-compared with the reference values. The numerical results confirm the ability of the proposed Hilbert spectrum based new seismic intensity parameters to approximate the postseismic structural damage with a smaller Standard Error of Estimation than this accomplished of the conventional ones.

A Study on the Methods of Enhancing the Seismic Performance for Reinforced Concrete School Buildings - Ordinary Moment Frame (철근콘크리트 보통모멘트 골조형식 학교건축물의 내전성능 향상 방안 연구)

  • Kim, Hyeon-Jin;Lee, Sang-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.74-81
    • /
    • 2009
  • In this study, the seismic performance of RC school buildings which were not designed according to earthquake-resistance design code were evaluated by using response spectrum and push-over analyses. The torsional amplification effect due to plan irregularity is considered and then the efficiency of seismic retrofitting methods such as RC shear wall, steel frame, RC frame and PC wing wall was investigated. The analysis result indicate that the inter-story drift concentrated in the first floor and most plastic hinge forms at the column of the first story. Among the retrofitting methods, the PC wing wall has the highest seismic performance in strength and story drift aspect. Especially, it can make building ductile behavior due to the concentrated inter-story drift at the first column hinge is distributed overall stories. The axial force, shear force and moment magnitude of existing elements significantly decreased after retrofitting. However, the axial and shear force of the elements connected to the additional retrofitting elements increased, and especially the boundary columns at the end of the retrofitting shear wall should be reinforced for assuring the enhancement of seismic performance.