• Title/Summary/Keyword: seismic analysis methods

Search Result 567, Processing Time 0.032 seconds

Study on Seismic Performance Evaluation of Existing Apartment with Wall Type (벽식 노후 공동주택의 내진성능평가에 관한 연구)

  • Jeong Chul-Hwa;Chung Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.52-55
    • /
    • 2004
  • Before incorporating the earthquake-resistance design in design code(998), most of existing residential buildings were built without having lateral resistance capacity in addition to their structural peculiarity such as exterior stair ways, exterior elevator room. For these reasons, the retrofitting research demands for existing buildings arise recently and many retrofitting methods are proposed. These tasks are important to reduce the enormous economic loss and environmental issues. In this study, Scaled residential buildings with/without lateral resistance were tested and monitored with external lateral load especially toward the longer side of the building. From these experiments, enhanced retrofitting methods of old shear wall system are proposed and also compared with structural analysis.

  • PDF

Analysis on dynamic numerical model of subsea railway tunnel considering various ground and seismic conditions (다양한 지반 및 지진하중 조건을 고려한 해저철도 터널의 동적 수치모델 분석)

  • Changwon Kwak;Jeongjun Park;Mintaek Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.583-603
    • /
    • 2023
  • Recently, the advancement of mechanical tunnel boring machine (TBM) technology and the characteristics of subsea railway tunnels subjected to hydrostatic pressure have led to the widespread application of shield TBM methods in the design and construction of subsea railway tunnels. Subsea railway tunnels are exposed in a constant pore water pressure and are influenced by the amplification of seismic waves during earthquake. In particular, seismic loads acting on subsea railway tunnels under various ground conditions such as soft ground, soft soil-rock composite ground, and fractured zones can cause significant changes in tunnel displacement and stress, thereby affecting tunnel safety. Additionally, the dynamic response of the ground and tunnel varies based on seismic load parameters such as frequency characteristics, seismic waveform, and peak acceleration, adding complexity to the behavior of the ground-tunnel structure system. In this study, a finite difference method is employed to model the entire ground-tunnel structure system, considering hydrostatic pressure, for the investigation of dynamic behavior of subsea railway tunnel during earthquake. Since the key factors influencing the dynamic behavior during seismic events are ground conditions and seismic waves, six analysis cases are established based on virtual ground conditions: Case-1 with weathered soil, Case-2 with hard rock, Case-3 with a composite ground of soil and hard rock in the tunnel longitudinal direction, Case-4 with the tunnel passing through a narrow fault zone, Case-5 with a composite ground of soft soil and hard rock in the tunnel longitudinal direction, and Case-6 with the tunnel passing through a wide fractured zone. As a result, horizontal displacements due to earthquakes tend to increase with an increase in ground stiffness, however, the displacements tend to be restrained due to the confining effects of the ground and the rigid shield segments. On the contrary, peak compressive stress of segment significantly increases with weaker ground stiffness and the effects of displacement restrain contribute the increase of peak compressive stress of segment.

Analysis of Slope Stability by Applying the Convergence of the Interstice Forces (분할편 경계내각 수렴에 의한 사면안정 해석)

  • 김팔규;김규문
    • Geotechnical Engineering
    • /
    • v.3 no.4
    • /
    • pp.21-30
    • /
    • 1987
  • The purpose of this paper is to develop a method of slope stability analysis, using slice method The direction of interstice forces was assumed in two ways: 1) inclined interslice force parallel to the base of slice, 2) normal interslice force normal to the boundary surface of slice being used in the existing slice method. The deviation from the value of interstice force caused by assumption was removed in the Processing of analysis, and the factor of safety was obtained more accurately by deciding the location of interstice force acting on each slice. More rational validity of the method with inclined interslice force was proved by performing slope stability analyses with both methods. The factor of safety obtained by the proposed method was compared with that by the existing methods, and the influence of seismic coefficient was also analyzed.

  • PDF

Depiction of concrete structures with seismic separation under faraway fault earthquakes

  • Luo, Liang;Nguyen, Hoang;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Nguyen, Viet-Duc;Dang, Hoang-Minh
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.71-82
    • /
    • 2020
  • One of the most suitable methods in structural design is seismic separator. Lead-Rubber Bearing (LRB) is one of the most well-known separation systems which can be used in different types of structures. This system mitigates the earthquake acceleration prior to transferring to the structure efficiently. However, the performance of this system in concrete structures with different heights have not been evaluated thoroughly yet. This paper aims to evaluate the performance of LRB separation system in concrete structures with different heights. For this purpose, three, 16, and 23 story concrete structures are equipped by LRB and exposed to a far-field earthquake. Next, a time history analysis is conducted on each of the structures. Finally, the performance of the concrete structures is compared with each other in the term of their response to the earthquakes and the formation of plastic hinges. The results of the paper show that the rate of change in acceleration response and the ratio of drift along the height of 8 and 23 stories concrete structures are more than those of the 16-stories, and the use of LRB reduces the formation of plastic joints.

Behavioral Analysis of Triaxial Micropile (TMP) through Field Loading Test and 3D-numerical Analysis (삼축 마이크로파일(TMP)의 현장수평재하시험과 3차원 수치해석을 통한 거동 분석)

  • Kim, Taehyun;Ahn, Kwangkuk;An, Sungyul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.4
    • /
    • pp.15-23
    • /
    • 2021
  • Various micropiles have been developed through research related to micropiles, which have been carried out with the increased use of micropiles. Among the micropile construction methods being developed, the triaxial micropile (tmp), which is recently developed for the purpose of increasing the horizontal bearing capacity (seismic resistance), is representative. The three-axis micropile has the advantage of a method that can resist horizontal load more effectively because three micropiles installed inclined on each axis resist horizontal load. However, there is a problem in effectively using this pile method due to insufficient research on the support characteristics of the triaxial group micropile. In order to effectively utilize the triaxial group micropile (tmp), it is required to evaluate the bearing capacity for the factors that affect the horizontal bearing capacity of the pile. Therefore, in this study, field horizontal loading Tests were performed for each load direction, field loading Tests were verified through three-dimensional finite element analysis, behavioral characteristics of triaxial micropiles were evaluated, and appropriate horizontal bearing capacity was analyzed in consideration of horizontal load directions.

Accuracy and robustness of hysteresis loop analysis in the identification and monitoring of plastic stiffness for highly nonlinear pinching structures

  • Hamish Tomlinson;Geoffrey W. Rodgers;Chao Xu;Virginie Avot;Cong Zhou;J. Geoffrey Chase
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.101-111
    • /
    • 2023
  • Structural health monitoring (SHM) covers a range of damage detection strategies for buildings. In real-time, SHM provides a basis for rapid decision making to optimise the speed and economic efficiency of post-event response. Previous work introduced an SHM method based on identifying structural nonlinear hysteretic parameters and their evolution from structural force-deformation hysteresis loops in real-time. This research extends and generalises this method to investigate the impact of a wide range of flag-shaped or pinching shape nonlinear hysteretic response and its impact on the SHM accuracy. A particular focus is plastic stiffness (Kp), where accurate identification of this parameter enables accurate identification of net and total plastic deformation and plastic energy dissipated, all of which are directly related to damage and infrequently assessed in SHM. A sensitivity study using a realistic seismic case study with known ground truth values investigates the impact of hysteresis loop shape, as well as added noise, on SHM accuracy using a suite of 20 ground motions from the PEER database. Monte Carlo analysis over 22,000 simulations with different hysteresis loops and added noise resulted in absolute percentage identification error (median, (IQR)) in Kp of 1.88% (0.79, 4.94)%. Errors were larger where five events (Earthquakes #1, 6, 9, 14) have very large errors over 100% for resulted Kp as an almost entirely linear response yielded only negligible plastic response, increasing identification error. The sensitivity analysis shows accuracy is reduces to within 3% when plastic drift is induced. This method shows clear potential to provide accurate, real-time metrics of non-linear stiffness and deformation to assist rapid damage assessment and decision making, utilising algorithms significantly simpler than previous non-linear structural model-based parameter identification SHM methods.

The Properties of a Nonlinear Direct Spectrum Method for Estimating the Seismic Performance (내진성능평가를 위한 비선형 직접스펙트럼법의 특성)

  • 강병두;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.65-73
    • /
    • 2002
  • It has been recognized that the damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear time history analyses, monotonic static nonlinear analyses, or equivalent static analyses with simulated nonlinear influences. Some building codes propose the capacity spectrum method based on the nonlinear static analysis(pushover analysis) to determine the earthquake-induced demand given by the structure pushover curve. These procedures are conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for MDF(multi degree of freedom) systems. The purpose of this paper is to investigate the accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters. The conclusions of this study are as follows; 1) NDSM is considered as practical method because the peak deformations of nonlinear system of MDF by NDSM are almost equal to the results of nonlinear time history analysis(NTHA) for various ground motions. 2) When the results of NDSM are compared with those of NTHA. mean of errors is the smallest in case of post-yielding stiffness factor 0.1, static force by MAD(modal adaptive distribution) and unloading stiffness degradation factor 0.2~0.3.

Structural Integrity Evaluation of Fuel Test Loop Submerged in Water Subjected to Postulated Pipe Rupture

  • Lee, Choon-Yeol;Kwon, Jae-Do;Lee, Yong-Son;Kim, Kil-Soo;Kim, Jun-Yeun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.215-225
    • /
    • 2000
  • The structural integrity of the fuel test loop (FTL) in a Korean experimental reactor is evaluated when the FTL, submerged in a water environment, is subjected to a postulated pipe rupture. The analyses are performed under static and dynamic conditions, imposing the thrust force history at each postulated pipe rupture section. Through analysis the following results are found: l) A double ended guillotine can not be expected based on the toughness of the material, 2) the structural integrity of the chimney surrounding the FTL would not impede the structural integrity by the pipe whip. All analyses are performed by finite element methods.

  • PDF

Vibration measurement and vulnerability analysis of a power plant cooling system

  • Anil, Ozgur;Akbas, Sami Oguzhan;Kantar, Erkan;Gel, A. Cem
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.199-215
    • /
    • 2013
  • During the service life of a structure, design complications and unexpected events may induce unforeseen vibrations. These vibrations can be generated by malfunctioning machinery or machines that are modified or placed without considering the original structural design because of a change in the intended use of the structure. Significant vibrations occurred at a natural gas plant cooling structure during its operation due to cavitation effect within the hydraulic system. This study presents findings obtained from the in-situ vibration measurements and following finite-element analyses of the cooling structure. Comments are made on the updated performance level and damage state of the structure using the results of these measurements and corresponding numerical analyses. An attempt was also made to assess the applicability of traditional displacement-based vulnerability estimation methods in the health monitoring of structures under vibrations with a character different from those due to seismic excitations.

Nonlinear earthquake response analysis of CWR on bridge considering soil-structure interaction. (지반-구조물 상호작용을 고려한 교량상 장대레일의 비선형 지진응답해석)

  • Shin Ran Cheol;Cho Sun Kyu;Yang Shin Chu;Choi Jun Seong
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.733-738
    • /
    • 2004
  • Recently continuous welded rail is generally used to ensure running performances and to overcome the problems such as structural vulnerability and fastener damage at the rail expansion joint. Though the use of continuous welded rail on bridge has the advantage of decreasing the vibration and damage of rail, it still the risk of buckling and breaking of rail due to change of temperature, starting and/or breaking force, axial stress concentration and so on. So, VIC code and many methods has been developed by researchers considering rail-bridge interaction. Although there are many research concerning stability of continuous welded rail about temperature change on bridge and starting and/or breaking force, the study of continuous welded mil for earthquake load is still unsufficient. In this study, the nonlinear seismic response analysis of continuous welded rail on bridge considering soil-structure interaction, geotechnical characteristic of foundation and earthquake isolation equipment has been performed to examine the stability of continuous welded rail.

  • PDF