• Title/Summary/Keyword: seismic analysis methods

Search Result 567, Processing Time 0.036 seconds

Beyond design basis seismic evaluation of underground liquid storage tanks in existing nuclear power plants using simple method

  • Wang, Shen
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2147-2155
    • /
    • 2022
  • Nuclear safety-related underground liquid storage tanks, such as those used to store fuel for emergency diesel generators, are critical components for safety of hundreds of existing nuclear power plants (NPP) worldwide. Since most of those NPP will continue to operate for decades, a beyond design base (BDB) seismic screening of safety-related underground tanks in those NPP is beneficial and essential to public safety. The analytical methodology for buried tank subjected to seismic effect, including a BDB seismic evaluation, needs to consider both soil-structure and fluid-structure interaction effects. Comprehensive analysis of such a soil-structure-fluid system is costly and time consuming, often subjected to availability of state-of-art finite element tools. Simple, but practically and reasonably accurate techniques for seismic evaluation of underground liquid storage tanks have not been established. In this study, a mechanics based solution is proposed for the evaluation of a cylindrical underground liquid storage tank using hand calculation methods. For validation, a practical example of two underground diesel fuel tanks in an existing nuclear power plant is presented and application of the proposed method is confirmed by using published results of the computer-aided System for Analysis of Soil Structural Interaction (SASSI). The proposed approach provides an easy to use tool for BDB seismic assessment prior to making decision of applying more costly technique by owner of the nuclear facility.

A Basic Study on Domestic Research Trends for Seismic Retrofit of Existing Education Facilities (기존 교육시설물 내진보강에 관한 국내 연구 동향)

  • Lee, Joo-Hyeong;Ha, Sun-Geun;Na, Young-Ju;Oh, June-Seok;Son, Seung-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.136-137
    • /
    • 2018
  • The domestic seismic retrofit guide was primally enacted in 1988, then the mandatory target have been consistently. As a result, the rate of earthquake-resistant is achieved 58.3% in public facilities. On the other hand, the rate of earthquake-resistant is low as 24.8% in education facilities. As education facilities damaged from Gyeong-ju, Po-hang earthquake occurred in South-Korea and the rate of earthquake-resistant is low, the seismic retrofit of existing education facilities got to be ordinary people's interest. Therefore, domestic researchers have been developed seismic retrofit methods which can apply to existing educational facilities, It is expected to become more active in the future. However, it is insufficient to consideration that how far domestic technology has been developed. Therefore, the objective of this study is to measure the level of domestic research through comparative analysis between domestic and foreign researches that seismic retrofit methods which can apply to existing educational facilities.

  • PDF

State of Practice of Performance-Based Seismic Design in Korea

  • Lee, Dong-Hun;Kim, Taejin;Kim, Jong-Ho;Kang, Dae-Eon
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.195-201
    • /
    • 2012
  • Today, a great effort to develop PBSD procedure to be utilized in Korea is given by domestic structural engineers, academics, and governmental organizations. After Great East Japan Earthquake (2011) took place, lots of clients in Korea became to concern of their buildings so that requests of seismic performance evaluation and seismic rehabilitation for existing buildings have been gradually increased. Such interests in seismic events initiated a rapid development of a series of guidelines for seismic performance evaluation and seismic performance enhancement. For new buildings, however, design guidelines for PBSD are yet well prepared in Korea and prescriptive design methods are dominant design procedure still. Herein, seismicity demands used in seismic performance evaluation and some important design parameters in NLRH are introduced. Some project examples for seismic performance evaluation and rehabilitation applying passive energy dissipation devices are also described in the latter part of paper.

Performance assessment of RC frame designed using force, displacement & energy based approach

  • Kumbhara, Onkar G.;Kumar, Ratnesh
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.699-714
    • /
    • 2020
  • Force based design (FBD) approach is prevalent in most of the national seismic design codes world over. Direct displacement based design (DDBD) and energy based design (EBD) approaches are relatively new methods of seismic design which claims to be more rational and predictive than the FBD. These three design approaches are conceptually distinct and imparts different strength, stiffness and ductility property to structural members for same plan configuration. In present study behavioural assessment of frame of six storey RC building designed using FBD, DDBD and EBD approaches has been performed. Lateral storey forces distribution, reinforcement design and results of nonlinear performance using static and dynamic methods have been compared. For the three approaches, considerable difference in lateral storey forces distribution and reinforcement design has been observed. Nonlinear pushover analysis and time history analysis results show that in FBD frame plastic deformation is concentrated in the lower storey, in EBD frame large plastic deformation is concentrated in the middle storeys though the inelastic hinges are well distributed over the height and, in DDBD frame plastic deformation is approximately uniform over the height. Overall the six storey frame designed using DDBD approach seems to be more rational than the other two methods.

Whole-working history analysis of seismic performance state of rocking wall moment frame structures based on plastic hinge evolution

  • Xing Su;Shi Yan;Tao Wang;Yuefeng Gao
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.175-189
    • /
    • 2024
  • Aiming at studying the plastic hinge (PH) evolution regularities and failure mode of rocking wall moment frame (RWMF) structure in earthquakes, the whole-working history analysis of seismic performance state of RWMF structure based on co-operation performance and PH evolution was carried out. Building upon the theoretical analysis of the elastic internal forces and deformations of RWMF structures, nonlinear finite element analysis (FEA) methods were employed to perform both Pushover analysis and seismic response time history analysis under different seismic coefficients (δ). The relationships among PH occurrence ratios (Rph), inter-story drifts and δ were established. Based on the plotted curve of the seismic performance states, evaluation limits for the Rph and inter-story drifts were provided for different performance states of RWMF structures. The results indicate that the Rph of RWMF structures exhibits a nonlinear evolution trend of "fast at first, then slow" with the increasing of δ. The general pattern is characterized by the initial development of beam hinges in the middle stories, followed by the development towards the top and bottom stories until the beam hinges are fully formed. Subsequently, the development of column hinges shifts from the bottom and top stories towards the middle stories of the structure, ultimately leading to the loss of seismic lateral capacity with a failure mode of partial beam yield, demonstrating a global yielding pattern. Moreover, the limits for the Rph and inter-story drifts effectively evaluate the five different performance states of RWMF structures.

Evaluation of seismic performance of road tunnels in operation (운영 중인 도로 터널의 내진 성능 평가)

  • Ahn, Jae-Kwang;Park, Du-Hee;Kim, Dong-Kyu;Kim, Kwang-Yeom
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.69-80
    • /
    • 2013
  • This study evaluates the seismic performance of road tunnels designed before the provisions for seismic design of tunnels were first established in 1999. Extensive design data and site investigation reports are investigated to select tunnels sections that are considered to be most susceptible to seismically induced damage under earthquake loading. Detailed analyses are performed on selected tunnels. The methods used are method of displacement and dynamic analysis. In performing the method of displacement, which is a type of pseudo-static analysis method used for underground structures, full domain and reduced domain modeling were used. The dynamic analyses are performed using finite difference method and using nonlinear constitutive model. Comparisons show that the reduced domain method of displacement match very closely with the dynamic analysis, demonstrating that it is the most suitable method for evaluating the seismic performance of road tunnels built in rocks. It is also shown that road tunnels, for which seismic design were not applied, are safe under the seismic risks corresponding to an earthquake with a return period 1000 years. It is concluded that additional seismic retrofit of tunnels is not necessary.

Seismic and Blast Design of Industrial Concrete Structures with Precast Intermediate Shear Wall System (프리캐스트 중간전단벽 시스템이 사용된 콘크리트 산업 시설물의 내진 및 방폭설계)

  • Lee, Won-Jun;Kim, Min-Su;Kim, Seon-hoon;Lee, Deuckhang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.93-101
    • /
    • 2024
  • Code-compliant seismic design should be essentially applied to realize the so-called emulative performance of precast concrete (PC) lateral force-resisting systems, and this study developed simple procedures to design precast industrial buildings with intermediate precast bearing wall systems considering both the effect of seismic and blast loads. Seismic design provisions specified in ACI 318 and ASCE 7 can be directly adopted, for which the so-called 1.5Sy condition is addressed in PC wall-to-wall and wall-to-base connections. Various coupling options were considered and addressed in the seismic design of wall-to-wall connections for the longitudinal and transverse design directions to secure optimized performance and better economic feasibility. On the other hand, two possible methods were adopted in blast analysis: 1) Equivalent static analysis (ESA) based on the simplified graphic method and 2) Incremental dynamic time-history analysis (IDTHA). The ESA is physically austere to use in practice for a typical industrial PC-bearing wall system. Still, it showed an overestimating trend in terms of the lateral deformation. The coupling action between precast wall segments appears to be inevitably required due to substantially large blast loads compared to seismic loads with increasing blast risk levels. Even with the coupled-precast shear walls, the design outcome obtained from the ESA method might not be entirely satisfactory to the drift criteria presented by the ASCE Blast Design Manual. This drawback can be overcome by addressing the IDTHA method, where all the design criteria were fully satisfied with precast shear walls' non-coupling and group-coupling strength, where each individual or grouped shear fence was designed to possess 1.5Sy for the seismic design.

Assessment of Code-specified Ground Motion Selection Criteria with Accurate Selection and Scaling Methods - II Seismic Response (구조물 동적해석을 위한 현행 내진설계기준의 입력 지반 운동 선정 조건 타당성 평가 - II 지진응답)

  • Ha, Seong Jin;Han, Sang Whan;Oh, Jang Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.181-188
    • /
    • 2017
  • Current seismic design provisions such as ASCE 7-10 provide criteria for selecting ground motions for conducting response history analysis. This study is the sequel of a companion paper (I - Ground Motion Selection) for assessment of the ASCE 7-10 criteria. To assess of the ASCE 7-10 criteria, nonlinear response history analyses of twelve single degree of freedom (SDF) systems and one multi-degree of freedom (MDF) system are conducted in this study. The results show that the target seismic demands for SDF can be predicted using the mean seismic demands over seven and ten ground motions selected according to the proposed method within an error of 30% and 20%, respectively

Insights from existing earthquake loss assessment research in Croatia

  • Hadzima-Nyarko, Marijana;Sipos, Tanja Kalman
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.365-375
    • /
    • 2017
  • Seismic risk management has two main technical aspects: to recommend the construction of high-performance buildings and other structures using earthquake-resistant designs or evaluate existing ones, and to prepare emergency plans using realistic seismic scenarios. An overview of seismic risk assessment methodologies in Croatia is provided with details regarding the components of the assessment procedures: hazard, vulnerability and exposure. For Croatia, hazard is presented with two maps and it is expressed in terms of the peak horizontal ground acceleration during an earthquake, with the return period of 95 or 475 years. A standard building typology catalogue for Croatia has not been prepared yet, but a database for the fourth largest city in Croatia is currently in its initial stage. Two methods for earthquake vulnerability assessment are applied and compared. The first is a relatively simple and fast analysis of potential seismic vulnerability proposed by Croatian researchers using damage index (DI) as a numerical value indicating the level of structural damage, while the second is the Macroseismic method.

A Study on Performance-based Seismic Design Method of Fire Extinguishing Pipe System (소화설비 배관의 성능위주 내진설계 방법에 관한 연구)

  • Lee, Jae-Ou;Kim, Hong-Kyung;Cho, Soon-Bong
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.86-94
    • /
    • 2017
  • In the present study, a Cook Book method and a Static System Analysis method were compared with each other on the basis of a seismic design criteria of fire-fighting facilities and analyzed. The Cook Book method is analyzed by dividing a pipeline in each same section. In this method, a stress analysis is not possible except for the section analyzed in such a way that a brace is designed according to the weight of pipe, water and pipe fitting. To the contrary, in case of the Static System Analysis method, the stress analysis for the whole pipeline can be performed because the whole pipeline is regarded as a single structure. For the fatal stress values locally generated, it is necessary to actively perform a pipeline analysis by installing a device capable of locally relieving the stress of the pipeline. In Korea, only the Cook Book method is provided as the seismic design criteria of fire-fighting facilities, which causes many problems with diversification of seismic design. Thus, it is necessary to apply the seismic design method of the pipeline by using various kinds of engineered Static System Analysis methods.