• Title/Summary/Keyword: seismic analyses

Search Result 1,108, Processing Time 0.027 seconds

Probabilistic seismic performance evaluation of non-seismic RC frame buildings

  • Maniyar, M.M.;Khare, R.K.;Dhakal, R.P.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.725-745
    • /
    • 2009
  • In this paper, probabilistic seismic performance assessment of a typical non-seismic RC frame building representative of a large inventory of existing buildings in developing countries is conducted. Nonlinear time-history analyses of the sample building are performed with 20 large-magnitude medium distance ground motions scaled to different levels of intensity represented by peak ground acceleration and 5% damped elastic spectral acceleration at the first mode period of the building. The hysteretic model used in the analyses accommodates stiffness degradation, ductility-based strength decay, hysteretic energy-based strength decay and pinching due to gap opening and closing. The maximum inter story drift ratios obtained from the time-history analyses are plotted against the ground motion intensities. A method is defined for obtaining the yielding and collapse capacity of the analyzed structure using these curves. The fragility curves for yielding and collapse damage levels are developed by statistically interpreting the results of the time-history analyses. Hazard-survival curves are generated by changing the horizontal axis of the fragility curves from ground motion intensities to their annual probability of exceedance using the log-log linear ground motion hazard model. The results express at a glance the probabilities of yielding and collapse against various levels of ground motion intensities.

The soil effect on the seismic behaviour of reinforced concrete buildings

  • Yon, Burak;Calayir, Yusuf
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.133-152
    • /
    • 2015
  • This paper investigates the soil effect on seismic behaviour of reinforced concrete (RC) buildings by using the spread plastic hinge model which includes material and geometric nonlinearity of the structural members. Therefore, typical reinforced concrete frame buildings are selected and nonlinear dynamic time history analyses and pushover analyses are performed. Three earthquake acceleration records are selected for nonlinear dynamic time history analyses. These records are adjusted to be compatible with the design spectrum defined in Turkish Seismic Code. Interstory drifts and damages of selected buildings are compared according to local soil classes. Also, capacity curves of these buildings are compared with maximum responses obtained from nonlinear dynamic time history analyses. The results show that, soil class influences the seismic behaviour of reinforced concrete buildings, significantly.

Seismic modeling and analysis for sodium-cooled fast reactor

  • Koo, Gyeong-Hoi;Kim, Suk-Hoon;Kim, Jong-Bum
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.475-502
    • /
    • 2012
  • In this paper, the seismic analysis modeling technologies for sodium-cooled fast reactor (SFR) are presented with detailed descriptions for each structure, system and component (SSC) model. The complicated reactor system of pool type SFR, which is composed of the reactor vessel, internal structures, intermediate heat exchangers, primary pumps, core assemblies, and core support structures, is mathematically described with simple stick models which can represent fundamental frequencies of SSC. To do this, detailed finite element analyses were carried out to identify fundamental beam frequencies with consideration of fluid added mass effects caused by primary sodium coolant contained in the reactor vessel. The calculation of fluid added masses is performed by detailed finite element analyses using FAMD computer program and the results are discussed in terms of the ways to be considered in a seismic modeling. Based on the results of seismic time history analyses for both seismic isolation and non-isolation design, the functional requirements for relative deflections are discussed, and the design floor response spectra are proposed that can be used for subsystem seismic design.

Seismic performance evaluation of steel moment frames with self-centering energy-dissipating coupled wall panels

  • Lu Sui;Hanheng Wu;Menglong Tao;Zhichao Jia;Tianhua Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.663-677
    • /
    • 2023
  • The self-centering energy-dissipating coupled wall panels (SECWs) possess a dual capacity of resiliency and energy dissipation. Used in steel frames, the SECWs can localize the damage of structures and reduce residual drifts. Based on OpenSEES, the nonlinear models were established and validated by experimental results. The seismic design procedure of steel frame with SECW structures (SF-SECW) was proposed in accordance with four-level seismic fortification objectives. Nonlinear time-history response analyses were carried out to validate the reasonability of seismic design procedure for 6-story and 12-story structures. Results show that the inter-story drifts of designed structures are less than drift limits. According to incremental dynamic analyses (IDA), the fragility curves of mentioned-above structure models under different limit states were obtained. The results indicate that designed structures have good seismic performance and meet the seismic fortification objectives.

INTEGRITY ANALYSIS OF AN UPPER GUIDE STRUCTURE FLANGE

  • LEE, KI-HYOUNG;KANG, SUNG-SIK;JHUNG, MYUNG JO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.766-775
    • /
    • 2015
  • The integrity assessment of reactor vessel internals should be conducted in the design process to secure the safety of nuclear power plants. Various loads such as self-weight, seismic load, flow-induced load, and preload are applied to the internals. Therefore, the American Society of Mechanical Engineers (ASME) Code, Section III, defines the stress limit for reactor vessel internals. The present study focused on structural response analyses of the upper guide structure upper flange. The distributions of the stress intensity in the flange body were analyzed under various design load cases during normal operation. The allowable stress intensities along the expected sections of stress concentration were derived from the results of the finite element analysis for evaluating the structural integrity of the flange design. Furthermore, seismic analyses of the upper flange were performed to identify dynamic behavior with respect to the seismic and impact input. The mode superposition and full transient methods were used to perform time-history analyses, and the displacement at the lower end of the flange was obtained. The effect of the damping ratio on the response of the flange was also evaluated, and the acceleration was obtained. The results of elastic and seismic analyses in this study will be used as basic information to judge whether a flange design meets the acceptance criteria.

Identifying significant earthquake intensity measures for evaluating seismic damage and fragility of nuclear power plant structures

  • Nguyen, Duy-Duan;Thusa, Bidhek;Han, Tong-Seok;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.192-205
    • /
    • 2020
  • Seismic design practices and seismic response analyses of civil structures and nuclear power plants (NPPs) have conventionally used the peak ground acceleration (PGA) or spectral acceleration (Sa) as an intensity measure (IM) of an earthquake. However, there are many other earthquake IMs that were proposed by various researchers. The aim of this study is to investigate the correlation between seismic responses of NPP components and 23 earthquake IMs and identify the best IMs for correlating with damage of NPP structures. Particularly, low- and high-frequency ground motion records are separately accounted in correlation analyses. An advanced power reactor NPP in Korea, APR1400, is selected for numerical analyses where containment and auxiliary buildings are modeled using SAP2000. Floor displacements and accelerations are monitored for the non- and base-isolated NPP structures while shear deformations of the base isolator are additionally monitored for the base-isolated NPP. A series of Pearson's correlation coefficients are calculated to recognize the correlation between each of the 23 earthquake IMs and responses of NPP structures. The numerical results demonstrate that there is a significant difference in the correlation between earthquake IMs and seismic responses of non-isolated NPP structures considering low- and high-frequency ground motion groups. Meanwhile, a trivial discrepancy of the correlation is observed in the case of the base-isolated NPP subjected to the two groups of ground motions. Moreover, a selection of PGA or Sa for seismic response analyses of NPP structures in the high-frequency seismic regions may not be the best option. Additionally, a set of fragility curves are thereafter developed for the base-isolated NPP based on the shear deformation of lead rubber bearing (LRB) with respect to the strongly correlated IMs. The results reveal that the probability of damage to the structure is higher for low-frequency earthquakes compared with that of high-frequency ground motions.

Seismic Analysis Method for the Seismically Isolated Structures Using LRBs (적층고무베어링을 사용한 면진구조물의 지진해석방법)

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.553-560
    • /
    • 2001
  • To substantiate the application of LRB(Laminated Rubber Bearing) to the seismic isolation system, it is necessary to develop a seismic analysis method considering the non-linear behavior of LRBs, which may significantly affect the seismic responses. In this paper, seismic analyses and shaking table tests are carried out for a seismically isolated structure using four LRBs. The parameter equations of seismic isolation frequency are obtained from the shaking table tests and the quasi-static tests of LRB itself to investigate the effects of the LRB characteristics in the prediction of maximum peak acceleration responses by analysis. From the comparison of the maximum peak acceleration responses obtained from numerical analyses and experiments, it is verified that the horizontal stiffness variations of LRB should be carefully considered in seismic analysis to obtain more accurate results.

  • PDF

Generation of Design Time History Complying With Japanese Seismic Design Standards for Nuclear Power Plants (일본 원전 내진설계 기술기준을 적용한 모의지진파(가속 도시간이력) 작성)

  • Gin, Seungmin;Kim, Yongbog;Lee, Yongsun;Moon, Il Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.83-91
    • /
    • 2021
  • Seismic designs for Korean nuclear power plants (NPPs) under earthquakes' design basis are noticed due to the recent earthquake events in Korea and Japan. Japan has developed the technologies and experiences of the NPPs through theoretical research and experimental verification with extensively accumulated measurement data. This paper describes the main features of the design-time history complying with the Japanese seismic design standard. Proper seed motions in the earthquake catalog are used to generate one set of design time histories. A magnitude and epicentral distance specify the amplitude envelope function configuring the shape of the earthquake. Cumulative velocity response spectral values of the design time histories are compared and checked to the target response spectra. Spectral accelerations of the time histories and the multiple-damping target response spectra are also checked to exceed. The generated design time histories are input to the reactor building seismic analyses with fixed-base boundary conditions to calculate the seismic responses. Another set of design time histories is generated to comply with Korean seismic design procedures for NPPs and used for seismic input motions to the same reactor containment building seismic analyses. The responses at the dome apex of the building are compared and analyzed. The generated design time histories will be also applied to subsequent seismic analyses of other Korean standard NPP structures.

Seismic response distribution estimation for isolated structures using stochastic response database

  • Eem, Seung-Hyun;Jung, Hyung-Jo
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.937-956
    • /
    • 2015
  • Seismic isolation systems decouple structures from ground motions to protect them from seismic events. Seismic isolation devices have been implemented in many full-scale buildings and bridges because of their simplicity, economic effectiveness, inherent stability, and reliability. It is well known that the most uncertain aspect for obtaining the accurate responses of an isolated structure from seismic events is the seismic loading itself. It is needed to know the seismic response distributions of the isolated structure resulting from the randomness of earthquakes when probabilistic designing or probabilistic evaluating an isolated structure. Earthquake time histories are useful and often an essential element for designing or evaluating isolated structures. However, it is very challenging to gather the design and evaluation information for an isolated structure from many seismic analyses. In order to evaluate the seismic performance of an isolated structure, numerous nonlinear dynamic analyses need to be performed, but this is impractical. In this paper, the concept of the stochastic response database (SRD) is defined to obtain the seismic response distributions of an isolated structure instantaneously, thereby significantly reducing the computational efforts. An equivalent model of the isolated structure is also developed to improve the applicability and practicality of the SRD. The effectiveness of the proposed methodology is numerically verified.

Seismic risk assessment of intake tower in Korea using updated fragility by Bayesian inference

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.317-326
    • /
    • 2019
  • This research aims to assess the tight seismic risk curve of the intake tower at Geumgwang reservoir by considering the recorded historical earthquake data in the Korean Peninsula. The seismic fragility, a significant part of risk assessment, is updated by using Bayesian inference to consider the uncertainties and computational efficiency. The reservoir is one of the largest reservoirs in Korea for the supply of agricultural water. The intake tower controls the release of water from the reservoir. The seismic risk assessment of the intake tower plays an important role in the risk management of the reservoir. Site-specific seismic hazard is computed based on the four different seismic source maps of Korea. Probabilistic Seismic Hazard Analysis (PSHA) method is used to estimate the annual exceedance rate of hazard for corresponding Peak Ground Acceleration (PGA). Hazard deaggregation is shown at two customary hazard levels. Multiple dynamic analyses and a nonlinear static pushover analysis are performed for deriving fragility parameters. Thereafter, Bayesian inference with Markov Chain Monte Carlo (MCMC) is used to update the fragility parameters by integrating the results of the analyses. This study proves to reduce the uncertainties associated with fragility and risk curve, and to increase significant statistical and computational efficiency. The range of seismic risk curve of the intake tower is extracted for the reservoir site by considering four different source models and updated fragility function, which can be effectively used for the risk management and mitigation of reservoir.